Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 183(1): 62-75.e17, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32946811

RESUMO

In response to skeletal muscle contraction during exercise, paracrine factors coordinate tissue remodeling, which underlies this healthy adaptation. Here we describe a pH-sensing metabolite signal that initiates muscle remodeling upon exercise. In mice and humans, exercising skeletal muscle releases the mitochondrial metabolite succinate into the local interstitium and circulation. Selective secretion of succinate is facilitated by its transient protonation, which occurs upon muscle cell acidification. In the protonated monocarboxylic form, succinate is rendered a transport substrate for monocarboxylate transporter 1, which facilitates pH-gated release. Upon secretion, succinate signals via its cognate receptor SUCNR1 in non-myofibrillar cells in muscle tissue to control muscle-remodeling transcriptional programs. This succinate-SUCNR1 signaling is required for paracrine regulation of muscle innervation, muscle matrix remodeling, and muscle strength in response to exercise training. In sum, we define a bioenergetic sensor in muscle that utilizes intracellular pH and succinate to coordinate tissue adaptation to exercise.


Assuntos
Músculo Esquelético/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácido Succínico/metabolismo , Animais , Humanos , Concentração de Íons de Hidrogênio , Inflamação/metabolismo , Camundongos , Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Contração Muscular , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais , Succinatos/metabolismo , Simportadores/metabolismo
2.
Cell ; 170(6): 1149-1163.e12, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886383

RESUMO

The diversity of mesenchymal cell types in the lung that influence epithelial homeostasis and regeneration is poorly defined. We used genetic lineage tracing, single-cell RNA sequencing, and organoid culture approaches to show that Lgr5 and Lgr6, well-known markers of stem cells in epithelial tissues, are markers of mesenchymal cells in the adult lung. Lgr6+ cells comprise a subpopulation of smooth muscle cells surrounding airway epithelia and promote airway differentiation of epithelial progenitors via Wnt-Fgf10 cooperation. Genetic ablation of Lgr6+ cells impairs airway injury repair in vivo. Distinct Lgr5+ cells are located in alveolar compartments and are sufficient to promote alveolar differentiation of epithelial progenitors through Wnt activation. Modulating Wnt activity altered differentiation outcomes specified by mesenchymal cells. This identification of region- and lineage-specific crosstalk between epithelium and their neighboring mesenchymal partners provides new understanding of how different cell types are maintained in the adult lung.


Assuntos
Pulmão/citologia , Mesoderma/citologia , Animais , Homeostase , Pulmão/fisiologia , Camundongos , Organoides/citologia , Alvéolos Pulmonares/citologia , Receptores Acoplados a Proteínas G/análise , Análise de Sequência de RNA , Análise de Célula Única , Transcrição Gênica
3.
EMBO J ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755258

RESUMO

Glycine-12 mutations in the GTPase KRAS (KRASG12) are an initiating event for development of lung adenocarcinoma (LUAD). KRASG12 mutations promote cell-intrinsic rewiring of alveolar type-II progenitor (AT2) cells, but to what extent such changes interplay with lung homeostasis and cell fate pathways is unclear. Here, we generated single-cell RNA-seq (scRNA-seq) profiles from AT2-mesenchyme organoid co-cultures, mice, and stage-IA LUAD patients, identifying conserved regulators of AT2 transcriptional dynamics and defining the impact of KRASG12D mutation with temporal resolution. In AT2WT organoids, we found a transient injury/plasticity state preceding AT2 self-renewal and AT1 differentiation. Early-stage AT2KRAS cells exhibited perturbed gene expression dynamics, most notably retention of the injury/plasticity state. The injury state in AT2KRAS cells of patients, mice, and organoids was distinguishable from AT2WT states via altered receptor expression, including co-expression of ITGA3 and SRC. The combination of clinically relevant KRASG12D and SRC inhibitors impaired AT2KRAS organoid growth. Together, our data show that an injury/plasticity state essential for lung repair is co-opted during AT2 self-renewal and LUAD initiation, suggesting that early-stage LUAD may be susceptible to interventions that target specifically the oncogenic nature of this cell state.

4.
Proc Natl Acad Sci U S A ; 115(41): 10315-10320, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30249661

RESUMO

ssDNA, which is involved in numerous aspects of chromosome biology, is managed by a suite of proteins with tailored activities. The majority of these proteins bind ssDNA indiscriminately, exhibiting little apparent sequence preference. However, there are several notable exceptions, including the Saccharomyces cerevisiae Cdc13 protein, which is vital for yeast telomere maintenance. Cdc13 is one of the tightest known binders of ssDNA and is specific for G-rich telomeric sequences. To investigate how these two different biochemical features, affinity and specificity, contribute to function, we created an unbiased panel of alanine mutations across the Cdc13 DNA-binding interface, including several aromatic amino acids that play critical roles in binding activity. A subset of mutant proteins exhibited significant loss in affinity in vitro that, as expected, conferred a profound loss of viability in vivo. Unexpectedly, a second category of mutant proteins displayed an increase in specificity, manifested as an inability to accommodate changes in ssDNA sequence. Yeast strains with specificity-enhanced mutations displayed a gradient of viability in vivo that paralleled the loss in sequence tolerance in vitro, arguing that binding specificity can be fine-tuned to ensure optimal function. We propose that DNA binding by Cdc13 employs a highly cooperative interface whereby sequence diversity is accommodated through plastic binding modes. This suggests that sequence specificity is not a binary choice but rather is a continuum. Even in proteins that are thought to be specific nucleic acid binders, sequence tolerance through the utilization of multiple binding modes may be a broader phenomenon than previously appreciated.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Sítios de Ligação , Mutagênese Sítio-Dirigida , Mutação , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/química
6.
8.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38617297

RESUMO

Acute injury in the airways or the lung activates local progenitors and stimulates changes in cell-cell interactions to restore homeostasis, but it is not appreciated how more distant niches are impacted. We utilized mouse models of airway-specific epithelial injury to examine secondary tissue-wide alveolar, immune, and mesenchymal responses. Single-cell transcriptomics and in vivo validation revealed transient, tissue-wide proliferation of alveolar type 2 (AT2) progenitor cells after club cell-specific ablation. The AT2 cell proliferative response was reliant on alveolar macrophages (AMs) via upregulation of Spp1 which encodes the secreted factor Osteopontin. A previously uncharacterized mesenchymal population we termed Mesenchymal Airway/Adventitial Niche Cell 2 (MANC2) also exhibited dynamic changes in abundance and a pro-fibrotic transcriptional signature after club cell ablation in an AM-dependent manner. Overall, these results demonstrate that acute airway damage can trigger distal lung responses including altered cell-cell interactions that may contribute to potential vulnerabilities for further dysregulation and disease.

9.
Res Sq ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993454

RESUMO

Alveolar type 2 (AT2) cells, the epithelial progenitor cells of the distal lung, are known to be the prominent cell of origin for lung adenocarcinoma. The regulatory programs that control chromatin and gene expression in AT2 cells during the early stages of tumor initiation are not well understood. Here, we dissected the response of AT2 cells to Kras activation and p53 loss (KP) using combined single cell RNA and ATAC sequencing in an established tumor organoid system. Multi-omic analysis showed that KP tumor organoid cells exhibit two major cellular states: one more closely resembling AT2 cells (SPC-high) and another with loss of AT2 identity (hereafter, Hmga2-high). These cell states are characterized by unique transcription factor (TF) networks, with SPC-high states associated with TFs known to regulate AT2 cell fate during development and homeostasis, and distinct TFs associated with the Hmga2-high state. CD44 was identified as a marker of the Hmga2-high state, and was used to separate organoid cultures for functional comparison of these two cell states. Organoid assays and orthotopic transplantation studies indicated that SPC-high cells have higher tumorigenic capacity in the lung microenvironment compared to Hmga2-high cells. These findings highlight the utility of understanding chromatin regulation in the early oncogenic versions of epithelial cells, which may reveal more effective means to intervene the progression of Kras-driven lung cancer.

10.
Proc Natl Acad Sci U S A ; 106(46): 19298-303, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19884503

RESUMO

Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to support a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity.


Assuntos
Proteínas de Ciclo Celular/química , Proteína de Replicação A/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Ligação a Telômeros/química , Telômero/metabolismo , Motivos de Aminoácidos , Proteínas de Ciclo Celular/genética , Sequência Conservada , Cristalografia por Raios X , Evolução Molecular , Estrutura Terciária de Proteína , Proteína de Replicação A/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ligação a Telômeros/genética
11.
Cell Rep ; 39(2): 110662, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417699

RESUMO

Lung progenitor cells are crucial for regeneration following injury, yet it is unclear whether lung progenitor cells can be functionally engrafted after transplantation. We transplanted organoid cells derived from alveolar type II (AT2) cells enriched by SCA1-negative status (SNO) or multipotent SCA1-positive progenitor cells (SPO) into injured mouse lungs. Transplanted SNO cells are retained in the alveolar regions, whereas SPO cells incorporate into airway and alveolar regions. Single-cell transcriptomics demonstrate that transplanted SNO cells are comparable to native AT2 cells. Transplanted SPO cells exhibit transcriptional hallmarks of alveolar and airway cells, as well as transitional cell states identified in disease. Transplanted cells proliferate after re-injury of recipient mice and retain organoid-forming capacity. Thus, lung epithelial organoid cells exhibit progenitor cell functions after reintroduction to the lung. This study reveals methods to interrogate lung progenitor cell potential and model transitional cell states relevant to pathogenic features of lung disease in vivo.


Assuntos
Organoides , Ataxias Espinocerebelares , Animais , Diferenciação Celular , Células Epiteliais , Pulmão , Camundongos , Células-Tronco
12.
Cancer Res ; 80(18): 3841-3854, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32690724

RESUMO

Inactivation of SMARCA4/BRG1, the core ATPase subunit of mammalian SWI/SNF complexes, occurs at very high frequencies in non-small cell lung cancers (NSCLC). There are no targeted therapies for this subset of lung cancers, nor is it known how mutations in BRG1 contribute to lung cancer progression. Using a combination of gain- and loss-of-function approaches, we demonstrate that deletion of BRG1 in lung cancer leads to activation of replication stress responses. Single-molecule assessment of replication fork dynamics in BRG1-deficient cells revealed increased origin firing mediated by the prelicensing protein, CDC6. Quantitative mass spectrometry and coimmunoprecipitation assays showed that BRG1-containing SWI/SNF complexes interact with RPA complexes. Finally, BRG1-deficient lung cancers were sensitive to pharmacologic inhibition of ATR. These findings provide novel mechanistic insight into BRG1-mutant lung cancers and suggest that their dependency on ATR can be leveraged therapeutically and potentially expanded to BRG1-mutant cancers in other tissues. SIGNIFICANCE: These findings indicate that inhibition of ATR is a promising therapy for the 10% of non-small cell lung cancer patients harboring mutations in SMARCA4/BRG1. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/18/3841/F1.large.jpg.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/genética , DNA Helicases/genética , Deleção de Genes , Neoplasias Pulmonares/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona , DNA Helicases/deficiência , Progressão da Doença , Feminino , Fatores de Transcrição Forkhead , Edição de Genes , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/deficiência
13.
Cell Metab ; 30(1): 190-200.e6, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31105043

RESUMO

Mitochondrial abundance and function are tightly controlled during metabolic adaptation but dysregulated in pathological states such as diabetes, neurodegeneration, cancer, and kidney disease. We show here that translation of PGC1α, a key governor of mitochondrial biogenesis and oxidative metabolism, is negatively regulated by an upstream open reading frame (uORF) in the 5' untranslated region of its gene (PPARGC1A). We find that uORF-mediated translational repression is a feature of PPARGC1A orthologs from human to fly. Strikingly, whereas multiple inhibitory uORFs are broadly present in fish PPARGC1A orthologs, they are completely absent in the Atlantic bluefin tuna, an animal with exceptionally high mitochondrial content. In mice, an engineered mutation disrupting the PPARGC1A uORF increases PGC1α protein levels and oxidative metabolism and confers protection from acute kidney injury. These studies identify a translational regulatory element governing oxidative metabolism and highlight its potential contribution to the evolution of organismal mitochondrial function.


Assuntos
Regiões 5' não Traduzidas/genética , Fases de Leitura Aberta/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Dípteros , Feminino , Células HEK293 , Humanos , Imunoprecipitação , Masculino , Camundongos , Mutação/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Filogenia , Processamento de Proteína Pós-Traducional/genética , Atum , Peixe-Zebra
15.
Nat Commun ; 8: 14922, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387316

RESUMO

Adenosquamous lung tumours, which are extremely poor prognosis, may result from cellular plasticity. Here, we demonstrate lineage switching of KRAS+ lung adenocarcinomas (ADC) to squamous cell carcinoma (SCC) through deletion of Lkb1 (Stk11) in autochthonous and transplant models. Chromatin analysis reveals loss of H3K27me3 and gain of H3K27ac and H3K4me3 at squamous lineage genes, including Sox2, ΔNp63 and Ngfr. SCC lesions have higher levels of the H3K27 methyltransferase EZH2 than the ADC lesions, but there is a clear lack of the essential Polycomb Repressive Complex 2 (PRC2) subunit EED in the SCC lesions. The pattern of high EZH2, but low H3K27me3 mark, is also prevalent in human lung SCC and SCC regions within ADSCC tumours. Using FACS-isolated populations, we demonstrate that bronchioalveolar stem cells and club cells are the likely cells-of-origin for SCC transitioned tumours. These findings shed light on the epigenetics and cellular origins of lineage-specific lung tumours.


Assuntos
Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Complexo Repressor Polycomb 2/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Quinases Ativadas por AMP , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metilação , Camundongos da Linhagem 129 , Camundongos Knockout , Complexo Repressor Polycomb 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Tumorais Cultivadas
16.
Genetics ; 191(1): 79-93, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22377634

RESUMO

The core assumption driving the use of conditional loss-of-function reagents such as temperature-sensitive mutations is that the resulting phenotype(s) are solely due to depletion of the mutant protein under nonpermissive conditions. However, prior published data, combined with observations presented here, challenge the generality of this assumption at least for telomere biology: for both wild-type yeast and strains bearing null mutations in telomere protein complexes, there is an additional phenotypic consequence when cells are grown above 34°. We propose that this synthetic phenotype is due to a naturally thermolabile activity that confers a telomere-specific defect, which we call the Tmp(-) phenotype. This prompted a re-examination of commonly used cdc13-ts and stn1-ts mutations, which indicates that these alleles are instead hypomorphic mutations that behave as apparent temperature-sensitive mutations due to the additive effects of the Tmp(-) phenotype. We therefore generated new cdc13-ts reagents, which are nonpermissive below 34°, to allow examination of cdc13-depleted phenotypes in the absence of this temperature-dependent defect. A return-to-viability experiment following prolonged incubation at 32°, 34°, and 36° with one of these new cdc13-ts alleles argues that the accelerated inviability previously observed at 36° in cdc13-1 rad9-Δ mutant strains is a consequence of the Tmp(-) phenotype. Although this study focused on telomere biology, viable null mutations that confer inviability at 36° have been identified for multiple cellular pathways. Thus, phenotypic analysis of other aspects of yeast biology may similarly be compromised at high temperatures by pathway-specific versions of the Tmp(-) phenotype.


Assuntos
Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telômero/genética , Telômero/metabolismo , Temperatura , Alelos , Viabilidade Microbiana , Mutagênese , Mutação , Fenótipo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Encurtamento do Telômero
17.
Genetics ; 185(1): 11-21, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20157006

RESUMO

In Saccharomyces cerevisiae, Cdc13, Stn1, and Ten1 are essential for both chromosome capping and telomere length homeostasis. These three proteins have been proposed to perform their roles at chromosome termini as a telomere-dedicated t-RPA complex, on the basis of several parallels with the conventional RPA complex. In this study, we have used several approaches to test whether a predicted alpha-helix in the N-terminal domain of the S. cerevisiae Stn1 protein is required for formation of the proposed t-RPA complex, in a manner analogous to the comparable helix in Rpa2. Analysis of a panel of Rpa2-OB(Stn1) chimeras indicates that whether a chimeric protein contains the Rpa2 or Stn1 version of this alpha-helix dictates its ability to function in place of Rpa2 or Stn1, respectively. In addition, mutations introduced into a hydrophobic surface of the predicted Stn1 alpha-helix eliminated association with Ten1. Strikingly, allele-specific suppression of a stn1 mutation in this helix (stn1-L164D) by a ten1 mutation (ten1-D138Y) resulted in a restored Stn1-Ten1 interaction, supporting the identification of a Stn1-Ten1 interface. We conclude that Stn1 interacts with Ten1 through an alpha-helix, in a manner analogous to the interaction between the comparable subunits of the RPA complex.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Supressão Genética/genética , Propriedades de Superfície
18.
Genetics ; 186(4): 1147-59, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20837994

RESUMO

In Saccharomyces cerevisiae, association between the Est1 telomerase subunit and the telomere-binding protein Cdc13 is essential for telomerase to be recruited to its site of action. A current model proposes that Tel1 binding to telomeres marks them for elongation, as the result of phosphorylation of a proposed S/TQ cluster in the telomerase recruitment domain of Cdc13. However, three observations presented here argue against one key aspect of this model. First, the pattern of Cdc13 phosphatase-sensitive isoforms is not altered by loss of Tel1 function or by mutations introduced into two conserved serines (S249 and S255) in the Cdc13 recruitment domain. Second, an interaction between Cdc13 and Est1, as monitored by a two-hybrid assay, is dependent on S255 but Tel1-independent. Finally, a derivative of Cdc13, cdc13-(S/TQ)11→(S/TA)11, in which every potential consensus phosphorylation site for Tel1 has been eliminated, confers nearly wild-type telomere length. These results are inconsistent with a model in which the Cdc13-Est1 interaction is regulated by Tel1-mediated phosphorylation of the Cdc13 telomerase recruitment domain. We propose an alternative model for the role of Tel1 in telomere homeostasis, which is based on the assumption that Tel1 performs the same molecular task at double-strand breaks (DSBs) and chromosome termini.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Hemostasia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Fosforilação , Ligação Proteica , Isoformas de Proteínas , Proteínas Serina-Treonina Quinases/fisiologia , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/fisiologia , Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA