Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mar Drugs ; 21(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36662215

RESUMO

The water-soluble blue-green pigment marennine, produced and partly excreted by the diatom Haslea ostrearia, and known for a long time for its role in the greening of oysters, was isolated from the culture medium, purified, and analyzed by Nuclear Magnetic Resonance (NMR) in order to gain insight into its chemical structure. The spectra show mainly carbohydrates of a complex composition, apparently highly branched, and with a mass in the order of 10 kDa. There are, in addition, some signals of aliphatic and, much weaker, aromatic groups that present aglycons. The latter might be responsible for the color. These carbohydrates are always associated with the blue-green color and cannot be separated from it by most treatments; they are interpreted as constituting the frame of the pigment. NMR after hydrolysis identifies the most abundant monosaccharides in marennine as galactose, xylose, mannose, rhamnose, and fucose.


Assuntos
Hexoses , Fenóis , Espectroscopia de Ressonância Magnética , Esqueleto , Polissacarídeos
2.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982463

RESUMO

Haslea ostrearia, a cosmopolitan marine pennate diatom, produces a characteristic blue pigment called marennine that causes the greening of filter-feeding organisms, such as oysters. Previous studies evidenced various biological activities of purified marennine extract, such as antibacterial, antioxidant and antiproliferative effects. These effects could be beneficial to human health. However, the specific biological activity of marennine remains to be characterized, especially regarding primary cultures of mammals. In the present study, we aimed to determine in vitro the effects of a purified extract of marennine on neuroinflammatory and cell migratory processes. These effects were assessed at non-cytotoxic concentrations of 10 and 50µg/mL on primary cultures of neuroglial cells. Marennine strongly interacts with neuroinflammatory processes in the immunocompetent cells of the central nervous system, represented by astrocytes and microglial cells. An anti-migratory activity based on a neurospheres migration assay has also been observed. These results encourage further study of Haslea blue pigment effects, particularly the identification of molecular and cellular targets affected by marennine, and strengthen previous studies suggesting that marennine has bioactivities which could be beneficial for human health applications.


Assuntos
Diatomáceas , Animais , Camundongos , Humanos , Doenças Neuroinflamatórias , Neuroglia , Movimento Celular , Mamíferos
3.
Molecules ; 28(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570595

RESUMO

Marennine, a blue pigment produced by the blue diatom Haslea ostrearia, is known to have some biological activities. This pigment is responsible for the greening of oysters on the West Coast of France. Other new species of blue diatom, H. karadagensis, H. silbo sp. inedit., H. provincialis sp. inedit, and H. nusantara, also produce marennine-like pigments with similar biological activities. Aside from being a potential source of natural blue pigments, H. ostrearia-like diatoms present a commercial potential for the aquaculture, food, cosmetics, and health industries. Unfortunately, for a hundred years, the exact molecular structure of this bioactive compound has remained a mystery. A lot of hypotheses regarding the chemical structure of marennine have been proposed. The recent discovery of this structure revealed that it is a macromolecule, mainly carbohydrates, with a complex composition. In this study, some glycoside hydrolases were used to digest marennine, and the products were further analyzed using nuclear magnetic resonance (NMR) and mass spectroscopy (MS). The reducing sugar assay showed that marennine was hydrolyzed only by endo-1,3-ß-glucanase. Further insight into the structure of marennine was provided by the spectrum of 1H NMR, MS, a colorimetric assay, and a computational study, which suggest that the chemical structure of marennine contains 1,3-ß-glucan.

4.
Mar Drugs ; 20(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35447907

RESUMO

The marine pennate diatom Haslea ostrearia has long been known for its characteristic blue pigment marennine, which is responsible for the greening of invertebrate gills, a natural phenomenon of great importance for the oyster industry. For two centuries, this taxon was considered unique; however, the recent description of a new blue Haslea species revealed unsuspected biodiversity. Marennine-like pigments are natural blue dyes that display various biological activities-e.g., antibacterial, antioxidant and antiproliferative-with a great potential for applications in the food, feed, cosmetic and health industries. Regarding fundamental prospects, researchers use model organisms as standards to study cellular and physiological processes in other organisms, and there is a growing and crucial need for more, new and unconventional model organisms to better correspond to the diversity of the tree of life. The present work, thus, advocates for establishing H. ostrearia as a new model organism by presenting its pros and cons-i.e., the interesting aspects of this peculiar diatom (representative of benthic-epiphytic phytoplankton, with original behavior and chemodiversity, controlled sexual reproduction, fundamental and applied-oriented importance, reference genome, and transcriptome will soon be available); it will also present the difficulties encountered before this becomes a reality as it is for other diatom models (the genetics of the species in its infancy, the transformation feasibility to be explored, the routine methods needed to cryopreserve strains of interest).


Assuntos
Cosméticos , Diatomáceas , Ostreidae , Animais , Antioxidantes/farmacologia , Diatomáceas/fisiologia , Pigmentação
5.
Mar Drugs ; 19(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921595

RESUMO

Marennine has long been known as the unique peculiar pigment responsible for the natural greening of oysters. It is specifically produced by the marine diatom Haslea ostrearia and it is a natural blue molecule indeed promising for food industry because of the rarity of such non-toxic, blue-colored pigments. In the search for its still not defined molecular structure, investigation of the color changes with the redox state has been carried out combining different approaches. Reducing and oxidizing chemicals have been added to purified marennine solutions and a stable blue-green color has been confirmed for the oxidized state, while a yellow color corresponded to the reduced unstable state. Raman spectroscopy has been used to monitor changes in the Raman spectra corresponding to the different colored states, and cyclic voltammetry has allowed the detection of a redox system in which protons and electrons are exchanged. These findings show that marennine is a suitable stable blue pigment for use in food applications and help in the elucidation of the chromophore structure.


Assuntos
Diatomáceas/metabolismo , Fenóis/química , Pigmentos Biológicos/química , Cor , Eletricidade , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Oxirredução , Fenóis/isolamento & purificação , Pigmentos Biológicos/isolamento & purificação , Análise Espectral Raman
6.
Mar Drugs ; 14(9)2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27598176

RESUMO

The search for novel compounds of marine origin has increased in the last decades for their application in various areas such as pharmaceutical, human or animal nutrition, cosmetics or bioenergy. In this context of blue technology development, microalgae are of particular interest due to their immense biodiversity and their relatively simple growth needs. In this review, we discuss about the promising use of microalgae and microalgal compounds as sources of natural antibiotics against human pathogens but also about their potential to limit microbial infections in aquaculture. An alternative to conventional antibiotics is needed as the microbial resistance to these drugs is increasing in humans and animals. Furthermore, using natural antibiotics for livestock could meet the consumer demand to avoid chemicals in food, would support a sustainable aquaculture and present the advantage of being environmentally friendly. Using natural and renewable microalgal compounds is still in its early days, but considering the important research development and rapid improvement in culture, extraction and purification processes, the valorization of microalgae will surely extend in the future.


Assuntos
Anti-Infecciosos/farmacologia , Aquicultura/métodos , Infecções/tratamento farmacológico , Microalgas/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Eucariotos , Humanos , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Viroses/tratamento farmacológico
7.
Int J Mol Sci ; 16(3): 4392-415, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25706513

RESUMO

There has been an intense research effort in the last decades in the field of biofouling prevention as it concerns many aspects of everyday life and causes problems to devices, the environment, and human health. Many different antifouling and antimicrobial materials have been developed to struggle against bacteria and other micro- and macro-organism attachment to different surfaces. However the "miracle solution" has still to be found. The research presented here concerns the synthesis of bio-based polymeric materials and the biological tests that showed their antifouling and, at the same time, antibacterial activity. The raw material used for the coating synthesis was natural rubber. The polyisoprene chains were fragmented to obtain oligomers, which had reactive chemical groups at their chain ends, therefore they could be modified to insert polymerizable and biocidal groups. Films were obtained by radical photopolymerization of the natural rubber derived oligomers and their structure was altered, in order to understand the mechanism of attachment inhibition and to increase the efficiency of the anti-biofouling action. The adhesion of three species of pathogenic bacteria and six strains of marine bacteria was studied. The coatings were able to inhibit bacterial attachment by contact, as it was verified that no detectable leaching of toxic molecules occurred.


Assuntos
Anti-Infecciosos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Butadienos/farmacologia , Hemiterpenos/farmacologia , Pentanos/farmacologia , Polímeros/farmacologia , Anti-Infecciosos/química , Aderência Bacteriana/fisiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Butadienos/química , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/fisiologia , Hemiterpenos/química , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Estrutura Molecular , Pentanos/química , Polímeros/química , Água do Mar/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
8.
Mar Drugs ; 12(6): 3161-89, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24879542

RESUMO

In diatoms, the main photosynthetic pigments are chlorophylls a and c, fucoxanthin, diadinoxanthin and diatoxanthin. The marine pennate diatom Haslea ostrearia has long been known for producing, in addition to these generic pigments, a water-soluble blue pigment, marennine. This pigment, responsible for the greening of oysters in western France, presents different biological activities: allelopathic, antioxidant, antibacterial, antiviral, and growth-inhibiting. A method to extract and purify marennine has been developed, but its chemical structure could hitherto not be resolved. For decades, H. ostrearia was the only organism known to produce marennine, and can be found worldwide. Our knowledge about H. ostrearia-like diatom biodiversity has recently been extended with the discovery of several new species of blue diatoms, the recently described H. karadagensis, H. silbo sp. inedit. and H. provincialis sp. inedit. These blue diatoms produce different marennine-like pigments, which belong to the same chemical family and present similar biological activities. Aside from being a potential source of natural blue pigments, H. ostrearia-like diatoms thus present a commercial potential for aquaculture, cosmetics, food and health industries.


Assuntos
Diatomáceas/metabolismo , Fenóis/farmacologia , Pigmentos Biológicos/farmacologia , Animais , Aquicultura/métodos , Cosméticos/química , Humanos
9.
Biochem Biophys Res Commun ; 438(4): 691-6, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23921230

RESUMO

In the medical field, attached bacteria can cause infections associated with catheters, incisions, burns, and medical implants especially in immunocompromised patients. The problem is exacerbated by the fact that attached bacteria are ∼1000 times more resistant to antibiotics than planktonic cells. The rapid spread of antibiotic resistance in these and other organisms has led to a significant need to find new methods for preventing bacterial attachment. The goal of this research was to evaluate the effectiveness of novel polymer coatings to prevent the attachment of three medically relevant bacteria. Tests were conducted with Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus for oligomers derived from modifications of natural rubber (cis 1,4-polyisoprene). The different oligomers were: PP04, with no quaternary ammonium (QA); MV067, one QA; PP06, three QA groups. In almost all experiments, cell attachment was inhibited to various extents as long as the oligomers were used. PP06 was the most effective as it decreased the planktonic cell numbers by at least 50% for all bacteria. Differences between species sensitivity were also observed. P. aeruginosa was the most resistant bacteria tested, S. aureus, the most sensitive. Further experiments are required to understand the full extent and mode of the antimicrobial properties of these surfaces.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Borracha/química , Borracha/farmacologia , Staphylococcus/efeitos dos fármacos , Hemiterpenos/química , Hemiterpenos/farmacologia , Humanos , Látex/química , Látex/farmacologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/fisiologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia
10.
Beilstein J Nanotechnol ; 14: 11-22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36703905

RESUMO

Different iron oxides (i.e., magnetite, maghemite, goethite, wüstite), particularly nanosized particles, show distinct effects on living organisms. Thus, it is of primary importance for their biomedical applications that the morphology and phase-structural state of these materials are investigated. The aim of this work was to obtain magnetic nanoparticles in a single reactor using Fe(III) acetylacetonate as the initial precursor for the synthesis of Fe(III) oleate or Fe(III) undecylate followed by their thermolysis in situ. We proposed a new approach, according to which the essential magnetite precursor (a complex salt of higher acids - Fe(III) alkanoates) is obtained in a solvent with a high boiling point via displacement reaction of acetylacetone with a higher acid from Fe(III) acetylacetonate during its elimination from the reaction mixture under vacuum conditions. Magnetic nanoparticles (NPM) were characterized in terms of morphology, hydrodynamic diameter, and composition via several techniques, such as transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, Fourier-transform infrared spectroscopy/attenuated total reflectance, 57Fe Mössbauer spectroscopy, and X-ray diffraction. The effect of unsaturated oleic (OA) and undecylenic (UA) acids, which are both used as a reagent and as a nanoparticle stabilizer, as well as the influence of their ratio to Fe(III) acetylacetonate on the properties of particles were investigated. Stable dispersions of NPM were obtained in 1-octadecene within the OA or UA ratio from 3.3 mol to 1 mol of acetylacetonate and up to 5.5 mol/mol. Below the mentioned limit, NPM dispersions were colloidally unstable, and at higher ratios no NPM were formed which could be precipitated by an applied magnetic field. Monodisperse nanoparticles of iron oxides were synthesized with a diameter of 8-13 nm and 11-16 nm using OA and UA, respectively. The organic shell that enables the particle to be dispersed in organic media, in the case of oleic acid, covers their inorganic core only with a layer similar to the monomolecular layer, whereas the undecylenic acid forms a thicker layer, which is 65% of the particle mass. The result is a significantly different resistance to oxidation of the nanoparticle inorganic cores. The core of the particles synthesized using oleic acid is composed of more than 90% of maghemite. When undecylenic acid is used for the synthesis, the core is composed of 75% of magnetite.

11.
Polymers (Basel) ; 14(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35012223

RESUMO

A novel rigid sound-absorbing material made from used palm oil-based polyurethane foam (PUF) and water hyacinth fiber (WHF) composite was developed in this research. The NCO index was set at 100, while the WHF content was set at 1%wt with mesh sizes ranging from 80 to 20. The mechanical properties, the morphology, the flammability, and the sound absorption coefficient (SAC) of the PUF composite were all investigated. When the WHF size was reduced from 80 to 20, the compression strength of the PUF increased from 0.33 to 0.47 N/mm2. Furthermore, the use of small fiber size resulted in a smaller pore size of the PUF composite and improved the sound absorption and flammability. A feasible sound-absorbing material was a PUF composite with a WHF mesh size of 80 and an SAC value of 0.92. As a result, PUF derived from both water hyacinth and used palm oil could be a promising green alternative material for sound-absorbing applications.

12.
J Agric Food Chem ; 69(40): 11753-11772, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34597023

RESUMO

As a result of their nutritive values, algae have been used as a food resource for centuries, and there is a growing interest to use them as enrichment ingredients in food products. However, food product acceptance by consumers is strongly linked to their organoleptic properties, especially the aroma, taste, and a combination of the two, flavor. With regard to edible algae, "fresh seashore", "seafood-like", "cucumber green", and "earthy" are descriptors commonly used to define their aromas. Several families of molecules participate in the diversity and peculiarities of algal aromas: pungent sulfur compounds and marine halogenated components but also herbaceous fatty acid derivatives and fruity-floral terpenoids. In both macroalgae (seaweeds) and microalgae, these compounds are studied from a chemistry point of view (identification and quantification) and a sensorial point of view, involving sensorial evaluation by panelists. As a whole food, a food ingredient, or a feed, algae are valued for their nutritional composition and their health benefits. However, because the acceptance of food by consumers is so strongly linked to its sensorial features, studies have been performed to explore the aromas of algae, their impact on food, their evolution through processing, and their ability to produce selected aromas using biotechnology. This review aims at highlighting algal aromas from seaweed and microalgae as well as their use, their handling, and their processing in the food industry.


Assuntos
Alga Marinha , Paladar , Aromatizantes , Odorantes/análise , Verduras
13.
Chem Commun (Camb) ; (16): 1754-6, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16609794

RESUMO

The first pseudo-immunoassay which employs a molecularly imprinted receptor and a fluorescent probe, and quantifies the bound analyte directly using the fluorescence anisotropy of the polymer-probe-analyte suspension, is described.

14.
Chem Commun (Camb) ; (5): 536-7, 2004 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-14973595

RESUMO

The synthesis and kinetic characterisation of soluble imprinted acrylamide based microgels incorporating arginine and tyrosine derivatives as additional functional monomers is reported.


Assuntos
Resinas Acrílicas/química , Catálise , Géis/química , Arginina/química , Reagentes de Ligações Cruzadas , Hidrólise , Indicadores e Reagentes , Cinética , Nanotecnologia , Fosfatos/química , Polímeros/síntese química , Tirosina/química
15.
Biosens Bioelectron ; 25(3): 572-8, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19423326

RESUMO

In this investigation we report the preparation of soluble molecularly imprinted catalytic nanogels with hydrolytic activity. The nanogels were imprinted using a stoichiometric non-covalent approach, employing a phosphate transition state analogue as template and polymerizable tyrosine and arginine units as functional monomers, for catalysis of a carbonate hydrolysis reaction. Full characterization of the rebinding and of the hydrolytic activity was performed, with particular emphasis on a novel titration method developed for the measurement of active site concentrations and the subsequent calculation of accurate catalytic parameters. Considering the features of the template molecule and the functional monomers used, an original method for performing rebinding experiments is described, taking advantage of the change of the visible spectrum evident on binding the sodium salt of the template to the arginine residue present in the nanogel.


Assuntos
Hidrolases/química , Impressão Molecular , Nanoestruturas/química , Análise Espectral/métodos , Sítios de Ligação , Técnicas Biossensoriais , Carbonatos/química , Géis , Cinética , Estrutura Molecular , Polímeros/química
16.
Langmuir ; 24(22): 13132-7, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-18947208

RESUMO

Monodisperse spherical hollow nanoparticles of mesoporous silica featuring mesopores with a radial orientation in the silica shell were synthesized via a dual-templating method. Specifically designed polystyrene latexes with anionic or cationic surface charges acted as the core templates, while cetyltrimethylammonium bromide served as a co-template to structure the mesopore formation during tetraethoxysilane hydrolysis/condensation. The particles were well-separated and presented homogeneous mesoporous silica shells. Average particle diameters were less than 200 nm, and the particles displayed high values of specific surface area and pore volume. The shell thickness and the hollow core diameter could be tuned independently while the radial pore structure was preserved. A detailed analysis of the nitrogen adsorption-desorption isotherms proved that the central cavity was completely isolated from the external medium, that is, only accessible through the radial mesopores of the shell. Consequently, our particles gather the advantages of a well-defined structure, straight penetrating channels across the silica shell, and a high accessible porous volume of the central core. These properties make them far better candidates than simple mesoporous particles for any storage and/or controlled release applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA