Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 48(8): 1329-1335, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29677387

RESUMO

Innate lymphocytes are selectively enriched in the liver where they have important roles in liver immunology. Murine studies have shown that type I NKT cells can promote liver inflammation, whereas type II NKT cells have an anti-inflammatory role. In humans, type II NKT cells were found to accumulate in the gut during inflammation and IL13Rα2 was proposed as a marker for these cells. In the human liver, less is known about type I and II NKT cells. Here, we studied the phenotype and function of human liver T cells expressing IL13Rα2. We found that IL13Rα2 was expressed by around 1% of liver-resident memory T cells but not on circulating T cells. In support of their innate-like T-cell character, the IL13Rα2+ T cells had higher expression of promyelocytic leukaemia zinc finger (PLZF) compared to IL13Rα2- T cells and possessed the capacity to produce IL-22. However, only a minority of human liver sulfatide-reactive type II NKT cells expressed IL13Rα2. Collectively, these findings suggest that IL13Rα2 identifies tissue-resident intrahepatic T cells with innate characteristics and the capacity to produce IL-22.


Assuntos
Memória Imunológica/imunologia , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Interleucinas/metabolismo , Fígado/imunologia , Células T Matadoras Naturais/imunologia , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Biomarcadores/metabolismo , Humanos , Fígado/citologia , Interleucina 22
2.
Blood ; 121(21): 4303-10, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23580663

RESUMO

Despite the use of immunosuppressive drugs, chronic allograft rejection remains a major hurdle in transplantation medicine. Induction of specific immunologic tolerance to antigens expressed by the graft would avoid its eventual functional loss and the severe side effects of paralyzing the immune system. We previously showed that donor-specific regulatory T-lymphocytes prevent rejection of fully allogeneic bone marrow (BM) grafts in mice. Thus generated hematopoietic chimeras then accepted skin and heart allografts of the same donor. We noticed that injected regulatory T-cells (Tregs) disappeared with time and investigated the mechanisms involved in the nevertheless long-term persistence of allograft tolerance. Using Tregs that can be depleted in vivo with diphtheria toxin, we show that injected cells are required for induction but not for maintenance of tolerance to BM allografts. We observed progressive deletion of donor-specific T-lymphocytes, accounting at least in part for maintenance of tolerance. Toxin-induced depletion of administered as well as host Tregs did not affect hematopoietic chimerism but it led to rapid loss of skin allografts. Therefore, our data show that newly generated host Tregs can prevent chronic allograft rejection. Long-lasting tolerance to allografts is thus achieved.


Assuntos
Transplante de Medula Óssea/imunologia , Fatores de Transcrição Forkhead/metabolismo , Rejeição de Enxerto/imunologia , Tolerância Imunológica/imunologia , Transplante de Pele/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células Cultivadas , Doença Crônica , Feminino , Fatores de Transcrição Forkhead/imunologia , Sobrevivência de Enxerto/imunologia , Imunoterapia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/transplante , Tempo , Quimeras de Transplante , Transplante Homólogo
3.
J Clin Invest ; 134(4)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127463

RESUMO

In a structure-function study of sulfatides that typically stimulate type II NKT cells, we made an unexpected discovery. We compared analogs with sphingosine or phytosphingosine chains and 24-carbon acyl chains with 0-1-2 double bonds (C or pC24:0, 24:1, or 24:2). C24:1 and C24:2 sulfatide presented by the CD1d monomer on plastic stimulated type II, not type I, NKT cell hybridomas, as expected. Unexpectedly, when presented by bone marrow-derived DCs (BMDCs), C24:2 reversed specificity to stimulate type I, not type II, NKT cell hybridomas, mimicking the corresponding ß-galactosylceramide (ßGalCer) without sulfate. C24:2 induced IFN-γ-dependent immunoprotection against CT26 colon cancer lung metastases, skewed the cytokine profile, and activated conventional DC subset 1 cells (cDC1s). This was abrogated by blocking lysosomal processing with bafilomycin A1, or by sulfite blocking of arylsulfatase or deletion of this enyzme that cleaves off sulfate. Thus, C24:2 was unexpectedly processed in BMDCs from a type II to a type I NKT cell-stimulating ligand, promoting tumor immunity. We believe this is the first discovery showing that antigen processing of glycosylceramides alters the specificity for the target cell, reversing the glycolipid's function from stimulating type II NKT cells to stimulating type I NKT cells, thereby introducing protective functional activity in cancer. We also believe our study uncovers a new role for antigen processing that does not involve MHC loading but rather alteration of which type of cell is responding.


Assuntos
Células T Matadoras Naturais , Neoplasias , Humanos , Sulfoglicoesfingolipídeos/metabolismo , Antígenos CD1d/genética , Apresentação de Antígeno , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sulfatos/metabolismo
4.
Hum Gene Ther Methods ; 30(1): 17-22, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30632408

RESUMO

The skin is considered as well suited for gene therapy and vaccination. DNA vaccines elicit both broad humoral and cellular immune responses when injected in the skin. Physical and chemical methods are needed to boost the expression. Gene electrotransfer (GET) is one of the most effective approaches. This step-by-step protocol describes the procedures to obtain an efficient GET targeted to the skin by using easy-to-use noninvasive electrodes after intradermal plasmid injection (i.d. GET). A specific pulse sequence is reported. Expression is observed by in vivo fluorescence imaging during >2 weeks as the plasmid was coding for tdTomato. The protocol is efficient for the transient expression of clinical proteins.


Assuntos
Eletroporação/métodos , Técnicas de Transferência de Genes , Pele/metabolismo , Animais , Feminino , Expressão Gênica/genética , Terapia Genética/métodos , Vetores Genéticos , Injeções Intradérmicas , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética
5.
J Immunother Cancer ; 7(1): 161, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31242938

RESUMO

BACKGROUND: Melanoma is a very aggressive skin tumor that can be cured when diagnosed and treated in its early stages. However, at the time of identification, the tumor is frequently in a metastatic stage. Intensive research is currently ongoing to improve the efficacy of the immune system in eliminating cancer cells. One approach is to boost the activation of cytotoxic T cells by IL-12 cytokine that plays a central role in the activation of the immune system. In parallel, physical methods such as electropermeabilization-based treatments are currently under investigation and show promising results. METHODS: In this study, we set electrical parameters to induce a partial-irreversible electropermeabilization (pIRE) of melanoma to induce a sufficient cell death and potential release of tumor antigens able to activate immune cells. This protocol mimics the situation where irreversible electropermeabilization is not fully completed. Then, a peritumoral plasmid IL-12 electrotransfer was combined with pIRE treatment. Evaluation of the tumor growth and survival was performed in mouse strains having a different immunological background (C57Bl/6 (WT), nude and C57Bl6 (TLR9-/-)). RESULTS: pIRE treatment induced apoptotic cell death and a temporary tumor growth delay in all mouse strains. In C57Bl/6 mice, we showed that peritumoral plasmid IL-12 electrotransfer combined with tumor pIRE treatment induced tumor regression correlating with a local secretion of IL-12 and IFN-γ. This combined treatment induced a growth delay of distant tumors and prevented the emergence of a second tumor in 50% of immunocompetent mice. CONCLUSIONS: The combination of pIL-12 GET and pIRE not only enhanced survival but could bring a curative effect in wild type mice. This two-step treatment, named Immune-Gene Electro-Therapy (IGET), led to a systemic activation of the adaptive immune system and the development of an anti-tumor immune memory.


Assuntos
Eletroporação , Terapia Genética , Interleucina-12/genética , Melanoma Experimental/terapia , Animais , Apoptose , Feminino , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Plasmídeos
6.
Oncoimmunology ; 8(10): e1625687, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31646070

RESUMO

The benefits of anti-cancer agents extend beyond direct tumor killing. One aspect of cell death is the potential to release antigens that initiate adaptive immune responses. Here, a diffusion enhanced formulation, INT230-6, containing potent anti-cancer cytotoxic agents, was administered intratumorally into large (approx. 300mm3) subcutaneous murine Colon26 tumors. Treatment resulted in regression from baseline in 100% of the tumors and complete response in up to 90%. CD8+ or CD8+/CD4+ T cell double-depletion at treatment onset prevented complete responses, indicating a critical role of T cells in promoting complete tumor regression. Mice with complete response were protected from subcutaneous and intravenous re-challenge of Colon26 cells in a CD4+/CD8+ dependent manner. Thus, immunological T cell memory was induced by INT230-6. Colon26 tumors express the endogenous retroviral protein gp70 containing the CD8+ T-cell AH-1 epitope. AH-1-specific CD8+ T cells were detected in peripheral blood of tumor-bearing mice and their frequency increased 14 days after treatment onset. AH-1-specific CD8+ T cells were also significantly enriched in tumors of untreated mice. These cells had an activated phenotype and highly expressed Programmed cell-death protein-1 (PD-1) but did not lead to tumor regression. CD8+ T cell tumor infiltrate also increased 11 days after treatment. INT230-6 synergized with checkpoint blockade, inducing a complete remission of the primary tumors and shrinking of untreated contralateral tumors, which demonstrates not only a local but also systemic immunological effect of the combined therapy. Similar T-cell dependent inhibition of tumor growth was also found in an orthotopic 4T1 breast cancer model.

7.
Front Immunol ; 10: 2355, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649670

RESUMO

iNKT cells are CD1d-restricted T cells recognizing lipid antigens. The prototypic iNKT cell-agonist α-galactosylceramide (α-GalCer) alongside compounds with similar structures induces robust proliferation and cytokine production of iNKT cells and protects against cancer in vivo. Monoclonal antibodies (mAbs) that detect CD1d-α-GalCer complexes have provided critical information for understanding of antigen presentation of iNKT cell agonists. Although most iNKT cell agonists with antitumor properties are α-linked glycosphingolipids that can be detected by anti-CD1d-α-GalCer mAbs, ß-ManCer, a glycolipid with a ß-linkage, induces strong antitumor immunity via mechanisms distinct from those of α-GalCer. In this study, we unexpectedly discovered that anti-CD1d-α-GalCer mAbs directly recognized ß-ManCer-CD1d complexes and could inhibit ß-ManCer stimulation of iNKT cells. The binding of anti-CD1d-α-GalCer mAb with ß-ManCer-CD1d complexes was also confirmed by plasmon resonance and could not be explained by α-anomer contamination. The binding of anti-CD1d-α-GalCer mAb was also observed with CD1d loaded with another ß-linked glycosylceramide, ß-GalCer (C26:0). Detection with anti-CD1d-α-GalCer mAbs indicates that the interface of the ß-ManCer-CD1d complex exposed to the iNKT cell TCR can assume a structure like that of CD1d-α-GalCer, despite its disparate carbohydrate structure. These results suggest that certain ß-linked monoglycosylceramides can assume a structural display similar to that of CD1d-α-GalCer and that the data based on anti-CD1d-α-GalCer binding should be interpreted with caution.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Apresentação de Antígeno/imunologia , Antígenos CD1d/imunologia , Galactosilceramidas , Células T Matadoras Naturais/imunologia , Animais , Antígenos CD1d/química , Galactosilceramidas/química , Galactosilceramidas/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células T Matadoras Naturais/patologia , Relação Estrutura-Atividade
8.
J Extracell Vesicles ; 8(1): 1597603, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258878

RESUMO

Biological nanoparticles, including viruses and extracellular vesicles (EVs), are of interest to many fields of medicine as biomarkers and mediators of or treatments for disease. However, exosomes and small viruses fall below the detection limits of conventional flow cytometers due to the overlap of particle-associated scattered light signals with the detection of background instrument noise from diffusely scattered light. To identify, sort, and study distinct subsets of EVs and other nanoparticles, as individual particles, we developed nanoscale Fluorescence Analysis and Cytometric Sorting (nanoFACS) methods to maximise information and material that can be obtained with high speed, high resolution flow cytometers. This nanoFACS method requires analysis of the instrument background noise (herein defined as the "reference noise"). With these methods, we demonstrate detection of tumour cell-derived EVs with specific tumour antigens using both fluorescence and scattered light parameters. We further validated the performance of nanoFACS by sorting two distinct HIV strains to >95% purity and confirmed the viability (infectivity) and molecular specificity (specific cell tropism) of biological nanomaterials sorted with nanoFACS. This nanoFACS method provides a unique way to analyse and sort functional EV- and viral-subsets with preservation of vesicular structure, surface protein specificity and RNA cargo activity.

9.
Sci Rep ; 8(1): 16833, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30443028

RESUMO

Gene transfer into cells or tissue by application of electric pulses (i.e. gene electrotransfer (GET)) is a non-viral gene delivery method that is becoming increasingly attractive for clinical applications. In order to make GET progress to wide clinical usage its efficacy needs to be improved and the safety of the method has to be confirmed. Therefore, the aim of our study was to increase GET efficacy in skin, by optimizing electric pulse parameters and the design of electrodes. We evaluated the safety of our novel approach by assaying the thermal stress effect of GET conditions and the biodistribution of a cytokine expressing plasmid. Transfection efficacy of different pulse parameters was determined using two reporter genes encoding for the green fluorescent protein (GFP) and the tdTomato fluorescent protein, respectively. GET was performed using non-invasive contact electrodes immediately after intradermal injection of plasmid DNA into mouse skin. Fluorescence imaging of transfected skin showed that a sophistication in the pulse parameters could be selected to get greater transfection efficacy in comparison to the standard ones. Delivery of electric pulses only mildly induced expression of the heat shock protein Hsp70 in a luminescent reporting transgenic mouse model, demonstrating that there were no drastic stress effects. The plasmid was not detected in other organs and was found only at the site of treatment for a limited period of time. In conclusion, we set up a novel approach for GET combining new electric field parameters with high voltage short pulses and medium voltage long pulses using contact electrodes, to obtain a high expression of both fluorescent reporter and therapeutic genes while showing full safety in living animals.


Assuntos
Eletroporação/métodos , Pele/metabolismo , Animais , Eletricidade , Eletrodos , Feminino , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Interleucina-12/metabolismo , Medições Luminescentes , Masculino , Camundongos Endogâmicos C57BL , Plasmídeos/metabolismo , Fatores de Tempo , Distribuição Tecidual , Transgenes
10.
Cancers (Basel) ; 10(11)2018 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-30373297

RESUMO

Cancer vaccines based on plasmid DNA represent a good therapeutic perspective, despite their low potency. Animal-derived hyaluronidases (Hyals) are employed in oncological clinical practice. Hyal has been also demonstrated to be a good enhancer of intramuscular Gene Electro-Transfer (GET) efficiency in anti-cancer preclinical protocols, with increased transfected cells and higher expression of the encoded genes. Nevertheless, the use of animal-derived Hyals results limited respect to their potentialities, since such preparations could be affected by low purity, variable potency and uncertain safety. To improve the delivery of intramuscular GET-based protocols in mouse, we investigated a new recombinant Hyal, the rHyal-sk, to assess in vivo safety and activity of this treatment at cellular and biochemical levels. We evaluated the cellular events and the inflammation chemical mediators involved at different time points after rHyal-sk administration plus GET. Our results demonstrated the in vivo safety and efficacy of rHyal-sk when injected once intramuscularly in association with GET, with no toxicity, good plasmid in-take ability, useful inflammatory response activation, and low immunogenicity. Following these findings, we would recommend the use of the new rHyal-sk for the delivery of DNA-based vaccines and immunotherapy, as well as into clinical practice, for tumor disease treatments.

11.
Oncoimmunology ; 7(7): e1439305, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900040

RESUMO

A major advantage of immunotherapy of cancer is that effector cells induced at one site should be able to kill metastatic cancer cells in other sites or tissues. However, different tissues have unique immune components, and very little is known about whether effector T cells induced against tumors in one tissue can work against the same tumors in other tissues. Here, we used CT26 murine tumor models to investigate anti-tumor immune responses in the skin and lungs and characterized cross-protection between the two tissues. Blockade of the function of Treg cells with anti-CD25 allowed for T cell-dependent rejection of s.c. tumors. When these mice were simultaneously inoculated i.v. with CT26, they also rejected tumors in the lung. Interestingly, in the absence of s.c. tumors, anti-CD25 treatment alone had no effect on lung tumor growth. These observations suggested that T cell-mediated anti-tumor protective immunity induced against s.c. tumors can also protect against lung metastases of the same tumors. In contrast, NKT cell-deficiency in CD1d-/- mice conferred significant protection against lung tumors but had no effect on the growth of tumors in the skin, and tumor rejection induced against the CT26 in the lung did not confer protection for the same tumor cells in the skin. Thus, effector cells against the same tumor do not work in all tissues, and the induction site of the effector T cells is critical to control metastasis. Further, the regulation of tumor immunity may be different for the same tumor in different anatomical locations.

12.
Methods Mol Biol ; 707: 187-96, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21287336

RESUMO

Regulatory T lymphocytes expressing CD4, high levels of CD25, and the transcription factor Foxp3 play a crucial role in the control of immune responses to self and nonself antigens. In contrast to immunosuppressive drugs currently used to treat immunopathology, these cells act in a very specific manner. Consequently, their clinical potential in the treatment of autoimmune disorders, inflammatory diseases, graft-versus-host disease, and allograft rejection is currently extensively studied in experimental animal models as well as in clinical trials. We have previously shown that appropriately in vitro stimulated CD4(+)CD25(high) regulatory T cells can be used to prevent rejection of bone marrow, skin, and heart allografts in the Mouse. We here describe the protocols used in our laboratory to isolate mouse regulatory T cells, to stimulate them in vitro in order to enrich in cells specific for donor-antigens, and to transplant bone marrow under cover of regulatory T cells. Thus, generated hematopoietic chimeras may subsequently be transplanted with solid tissues and organs from the same donor.


Assuntos
Técnicas Citológicas , Rejeição de Enxerto , Isoantígenos/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Animais , Camundongos
13.
Front Immunol ; 2: 80, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22566869

RESUMO

The immunosuppressive regimens currently used in transplantation to prevent allograft destruction by the host's immune system have deleterious side effects and fail to control chronic rejection processes. Induction of donor-specific non-responsiveness (i.e., immunological tolerance) to transplants would solve these problems and would substantially ameliorate patients' quality of life. It has been proposed that bone marrow or hematopoietic stem-cell transplantation, and resulting (mixed) hematopoietic chimerism, lead to immunological tolerance to organs of the same donor. However, a careful analysis of the literature, performed here, clearly establishes that whereas hematopoietic chimerism substantially prolongs allograft survival, it does not systematically prevent chronic rejection. Moreover, the cytotoxic conditioning regimens used to achieve long-term persistence of chimerism are associated with severe side effects that appear incompatible with a routine use in the clinic. Several laboratories recently embarked on different studies to develop alternative strategies to overcome these issues. We discuss here recent advances obtained by combining regulatory T cell infusion with bone-marrow transplantation. In experimental settings, this attractive approach allows development of genuine immunological tolerance to donor tissues using clinically relevant conditioning regimens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA