Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 1891, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024905

RESUMO

Social relationships in female mammals are usually determined by an interplay among genetic, endogenous, social and ecological factors that ultimately affect their lifetime reproductive success. However, few studies have attempted to control for, and integrate these factors, hampering our understanding of drivers underlying female sociality. Here, we used generalized affiliation indices, combined with social networks, reproductive condition, and genetic data to investigate drivers of associations in female southern Australian bottlenose dolphins. Our analysis is based on photo-identification and genetic data collected through systematic boat surveys over a two-year study period. Female dolphins formed preferred associations and social clusters which ranged from overlapping to discrete home ranges. Furthermore, matrilineal kinship and biparental relatedness, as well as reproductive condition, correlated with the strength of female affiliations. In addition, relatedness for both genetic markers was also higher within than between social clusters. The predictability of resources in their embayment environment, and the availability of same-sex relatives in the population, may have favoured the formation of social bonds between genetically related females and those in similar reproductive condition. This study highlights the importance of genetic, endogenous, social and ecological factors in determining female sociality in coastal dolphins.


Assuntos
Comportamento Animal/fisiologia , Golfinho Nariz-de-Garrafa/fisiologia , Aptidão Genética , Reprodução/fisiologia , Comportamento Social , Animais , Austrália , Golfinho Nariz-de-Garrafa/psicologia , Feminino , Marcadores Genéticos , Comportamento de Retorno ao Território Vital
2.
Sci Rep ; 8(1): 15659, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30353106

RESUMO

As marine predators experience increasing anthropogenic pressures, there is an urgent need to understand their distribution and their drivers to inform spatial conservation planning. We used an ensemble modelling approach to investigate the spatio-temporal distribution of southern Australian bottlenose dolphins (Tursiops cf. australis) in relation to a variety of ecogeographical and anthropogenic variables in Coffin Bay, Thorny Passage Marine Park, South Australia. Further, we evaluated the overlap between current spatial management measures and important dolphin habitat. Dolphins showed no distinct seasonal shifts in distribution patterns. Models of the entire study area indicate that zones of high probability of dolphin occurrence were located mainly within the inner area of Coffin Bay. In the inner area, zones with high probability of dolphin occurrence were associated with shallow waters (2-4 m and 7-10 m) and located within 1,000 m from land and 2,500 m from oyster farms. The multi-modal response curve of depth in the models likely shows how the different dolphin communities in Coffin Bay occupy different embayments characterized by distinct depth patterns. The majority of areas of high (>0.6) probability of dolphin occurrence are outside sanctuary zones where multiple human activities are allowed. The inner area of Coffin Bay is an important area of year-round habitat suitability for dolphins. Our results can inform future spatial conservation decisions and improve protection of important dolphin habitat.


Assuntos
Golfinho Nariz-de-Garrafa/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Modelos Teóricos , Animais , Austrália , Baías , Geografia , Atividades Humanas , Probabilidade , Estações do Ano , Especificidade da Espécie
3.
Ecol Evol ; 8(1): 242-256, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321867

RESUMO

Information on site fidelity and ranging patterns of wild animals is critical to understand how they use their environment and guide conservation and management strategies. Delphinids show a wide variety of site fidelity and ranging patterns. Between September 2013 and October 2015, we used boat-based surveys, photographic identification, biopsy sampling, clustering analysis, and geographic information systems to determine the site-fidelity patterns and representative ranges of southern Australian bottlenose dolphins (Tursiops cf. australis) inhabiting the inner area of Coffin Bay, a highly productive inverse estuary located within Thorny Passage Marine Park, South Australia. Agglomerative hierarchical clustering (AHC) of individuals' site-fidelity index and sighting rates indicated that the majority of dolphins within the inner area of Coffin Bay are "regular residents" (n = 125), followed by "occasional residents" (n = 28), and "occasional visitors" (n = 26). The low standard distance deviation indicated that resident dolphins remained close to their main center of use (range = 0.7-4.7 km, X ± SD = 2.3 ± 0.9 km). Representative ranges of resident dolphins were small (range = 3.9-33.5 km2, X ± SD = 15.2 ± 6.8 km2), with no significant differences between males and females (Kruskal-Wallis, χ2 = 0.426, p = .808). The representative range of 56% of the resident dolphins was restricted to a particular bay within the study area. The strong site fidelity and restricted ranging patterns among individuals could be linked to the high population density of this species in the inner area of Coffin Bay, coupled with differences in social structure and feeding habits. Our results emphasize the importance of productive habitats as a major factor driving site fidelity and restricted movement patterns in highly mobile marine mammals and the high conservation value of the inner area of Coffin Bay for southern Australian bottlenose dolphins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA