Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Physiol Rev ; 101(3): 1083-1176, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33118864

RESUMO

Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.


Assuntos
Potenciais de Ação/fisiologia , Arritmias Cardíacas/fisiopatologia , Canais Iônicos/metabolismo , Miocárdio/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Humanos , Miócitos Cardíacos/metabolismo
2.
Int J Toxicol ; : 10915818241255885, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822557

RESUMO

Chronic repeated-dose toxicity studies are required to support long-term dosing in late-stage clinical trials, providing data to adequately characterize adverse effects of potential concern for human safety. Different regulatory guidances for the design and duration of chronic toxicity studies are available, with flexibility in approaches often adopted for specific drug modalities. These guidances may provide opportunities to reduce time, cost, compound requirement and animal use within drug development programs if applied more broadly and considered outside their current scopes of use. This article summarizes presentations from a workshop at the 43rd Annual Meeting of the American College of Toxicology (ACT) in November 2022, discussing different approaches for chronic toxicity studies. A recent industry collaboration between the Netherlands Medicines Evaluation Board (MEB) and UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) illustrated current practices and the value of chronic toxicity studies for monoclonal antibodies (mAbs) and evaluated a weight of evidence (WOE) model where a 3-month study rather than a 6-month study might be adequate. Other topics included potential opportunities for single-species chronic toxicity studies for small molecules, peptides and oligonucleotides and whether a 6-month duration non-rodent study can be used more routinely than a 9-month study (similar to ICH S6(R1) for biological products). Also addressed were opportunities to optimize recovery animal use if warranted and whether restriction to one study only (if at all) can be applied more widely within and outside ICH S6(R1).

3.
Biophys J ; 118(10): 2596-2611, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32298635

RESUMO

High-throughput in vitro drug assays have been impacted by recent advances in human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) technology and by contact-free all-optical systems simultaneously measuring action potentials (APs) and Ca2+ transients (CaTrs). Parallel computational advances have shown that in silico simulations can predict drug effects with high accuracy. We combine these in vitro and in silico technologies and demonstrate the utility of high-throughput experimental data to refine in silico hiPSC-CM populations and to predict and explain drug action mechanisms. Optically obtained hiPSC-CM APs and CaTrs were used from spontaneous activity and under optical pacing in control and drug conditions at multiple doses. An updated version of the Paci2018 model was developed to refine the description of hiPSC-CM spontaneous electrical activity; a population of in silico hiPSC-CMs was constructed and calibrated using simultaneously recorded APs and CaTrs. We tested in silico five drugs (astemizole, dofetilide, ibutilide, bepridil, and diltiazem) and compared the outcomes to in vitro optical recordings. Our simulations showed that physiologically accurate population of models can be obtained by integrating AP and CaTr control records. Thus, constructed population of models correctly predicted the drug effects and occurrence of adverse episodes, even though the population was optimized only based on control data and in vitro drug testing data were not deployed during its calibration. Furthermore, the in silico investigation yielded mechanistic insights; e.g., through simulations, bepridil's more proarrhythmic action in adult cardiomyocytes compared to hiPSC-CMs could be traced to the different expression of ion currents in the two. Therefore, our work 1) supports the utility of all-optical electrophysiology in providing high-content data to refine experimentally calibrated populations of in silico hiPSC-CMs, 2) offers insights into certain limitations when translating results obtained in hiPSC-CMs to humans, and 3) shows the strength of combining high-throughput in vitro and population in silico approaches.


Assuntos
Células-Tronco Pluripotentes Induzidas , Potenciais de Ação , Adulto , Simulação por Computador , Avaliação de Medicamentos , Humanos , Miócitos Cardíacos
4.
J Mol Cell Cardiol ; 142: 24-38, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32251669

RESUMO

Cardiac Purkinje cells (PCs) are implicated in lethal arrhythmias caused by cardiac diseases, mutations, and drug action. However, the pro-arrhythmic mechanisms in PCs are not entirely understood, particularly in humans, as most investigations are conducted in animals. The aims of this study are to present a novel human PCs electrophysiology biophysically-detailed computational model, and to disentangle ionic mechanisms of human Purkinje-related electrophysiology, pacemaker activity and arrhythmogenicity. The new Trovato2020 model incorporates detailed Purkinje-specific ionic currents and Ca2+ handling, and was developed, calibrated and validated using human experimental data acquired at multiple frequencies, both in control conditions and following drug application. Multiscale investigations were performed in a Purkinje cell, in fibre and using an experimentally-calibrated population of PCs to evaluate biological variability. Simulations demonstrate the human Purkinje Trovato2020 model is the first one to yield: (i) all key AP features consistent with human Purkinje recordings; (ii) Automaticity with funny current up-regulation (iii) EADs at slow pacing and with 85% hERG block; (iv) DADs following fast pacing; (v) conduction velocity of 160 cm/s in a Purkinje fibre, as reported in human. The human in silico PCs population highlights that: (1) EADs are caused by ICaL reactivation in PCs with large inward currents; (2) DADs and triggered APs occur in PCs experiencing Ca2+ accumulation, at fast pacing, caused by large L-type calcium current and small Na+/Ca2+ exchanger. The novel human Purkinje model unlocks further investigations into the role of cardiac Purkinje in ventricular arrhythmias through computer modeling and multiscale simulations.


Assuntos
Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Biomarcadores , Suscetibilidade a Doenças , Modelos Biológicos , Ramos Subendocárdicos/metabolismo , Ramos Subendocárdicos/fisiopatologia , Potenciais de Ação , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Fenômenos Eletrofisiológicos , Humanos , Reprodutibilidade dos Testes , Sódio/metabolismo
5.
Toxicol Appl Pharmacol ; 390: 114883, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31981640

RESUMO

Human-based in silico models are emerging as important tools to study the effects of integrating inward and outward ion channel currents to predict clinical proarrhythmic risk. The aims of this study were 2-fold: 1) Evaluate the capacity of an in silico model to predict QTc interval prolongation in the in vivo anesthetized cardiovascular guinea pig (CVGP) assay for new chemical entities (NCEs) and; 2) Determine if a translational pharmacokinetic/pharmacodynamic (tPKPD) model can improve the predictive capacity. In silico simulations for NCEs were performed using a population of human ventricular action potential (AP) models. PatchXpress® (PX) or high throughput screening (HTS) ion channel data from respectively n = 73 and n = 51 NCEs were used as inputs for the in silico population. These NCEs were also tested in the CVGP (n = 73). An M5 pruned decision tree-based regression tPKPD model was used to evaluate the concentration at which an NCE is liable to prolong the QTc interval in the CVGP. In silico results successfully predicted the QTc interval prolongation outcome observed in the CVGP with an accuracy/specificity of 85%/73% and 75%/77%, when using PX and HTS ion channel data, respectively. Considering the tPKPD predicted concentration resulting in QTc prolongation (EC5%) increased accuracy/specificity to 97%/95% using PX and 88%/97% when using HTS. Our results support that human-based in silico simulations in combination with tPKPD modeling can provide correlative results with a commonly used early in vivo safety assay, suggesting a path toward more rapid NCE assessment with reduced resources, cycle time, and animal use.


Assuntos
Antiarrítmicos/farmacologia , Arritmias Cardíacas , Simulação por Computador , Técnicas Eletrofisiológicas Cardíacas , Modelos Biológicos , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Linhagem Celular , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Cobaias , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Modelos Químicos
6.
J Mol Cell Cardiol ; 96: 72-81, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26385634

RESUMO

INTRODUCTION: Hypertrophic cardiomyopathy (HCM) is a cause of sudden arrhythmic death, but the understanding of its pro-arrhythmic mechanisms and an effective pharmacological treatment are lacking. HCM electrophysiological remodelling includes both increased inward and reduced outward currents, but their role in promoting repolarisation abnormalities remains unknown. The goal of this study is to identify key ionic mechanisms driving repolarisation abnormalities in human HCM, and to evaluate anti-arrhythmic effects of single and multichannel inward current blocks. METHODS: Experimental ionic current, action potential (AP) and Ca(2+)-transient (CaT) recordings were used to construct populations of human non-diseased and HCM AP models (n=9118), accounting for inter-subject variability. Simulations were conducted for several degrees of selective and combined inward current block. RESULTS: Simulated HCM cardiomyocytes exhibited prolonged AP and CaT, diastolic Ca(2+) overload and decreased CaT amplitude, in agreement with experiments. Repolarisation abnormalities in HCM models were consistently driven by L-type Ca(2+) current (ICaL) re-activation, and ICaL block was the most effective intervention to normalise repolarisation and diastolic Ca(2+), but compromised CaT amplitude. Late Na(+) current (INaL) block partially abolished repolarisation abnormalities, with small impact on CaT. Na(+)/Ca(2+) exchanger (INCX) block effectively restored repolarisation and CaT amplitude, but increased Ca(2+) overload. Multichannel block increased efficacy in normalising repolarisation, AP biomarkers and CaT amplitude compared to selective block. CONCLUSIONS: Experimentally-calibrated populations of human AP models identify ICaL re-activation as the key mechanism for repolarisation abnormalities in HCM, and combined INCX, INaL and ICaL block as effective anti-arrhythmic therapies also able to partially reverse the HCM electrophysiological phenotype.


Assuntos
Potenciais de Ação , Antiarrítmicos/farmacologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo L/metabolismo , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Humanos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio/metabolismo
7.
Europace ; 18(9): 1287-98, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26622055

RESUMO

Both biomedical research and clinical practice rely on complex datasets for the physiological and genetic characterization of human hearts in health and disease. Given the complexity and variety of approaches and recordings, there is now growing recognition of the need to embed computational methods in cardiovascular medicine and science for analysis, integration and prediction. This paper describes a Workshop on Computational Cardiovascular Science that created an international, interdisciplinary and inter-sectorial forum to define the next steps for a human-based approach to disease supported by computational methodologies. The main ideas highlighted were (i) a shift towards human-based methodologies, spurred by advances in new in silico, in vivo, in vitro, and ex vivo techniques and the increasing acknowledgement of the limitations of animal models. (ii) Computational approaches complement, expand, bridge, and integrate in vitro, in vivo, and ex vivo experimental and clinical data and methods, and as such they are an integral part of human-based methodologies in pharmacology and medicine. (iii) The effective implementation of multi- and interdisciplinary approaches, teams, and training combining and integrating computational methods with experimental and clinical approaches across academia, industry, and healthcare settings is a priority. (iv) The human-based cross-disciplinary approach requires experts in specific methodologies and domains, who also have the capacity to communicate and collaborate across disciplines and cross-sector environments. (v) This new translational domain for human-based cardiology and pharmacology requires new partnerships supported financially and institutionally across sectors. Institutional, organizational, and social barriers must be identified, understood and overcome in each specific setting.


Assuntos
Cardiologia/métodos , Fármacos Cardiovasculares/uso terapêutico , Cardiopatias , Farmacologia/métodos , Pesquisa Translacional Biomédica/métodos , Animais , Biomarcadores/metabolismo , Técnicas de Imagem Cardíaca , Cardiotoxicidade , Fármacos Cardiovasculares/efeitos adversos , Comportamento Cooperativo , Difusão de Inovações , Técnicas Eletrofisiológicas Cardíacas , Cardiopatias/diagnóstico por imagem , Cardiopatias/tratamento farmacológico , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Humanos , Comunicação Interdisciplinar , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Valor Preditivo dos Testes , Prognóstico , Parcerias Público-Privadas
8.
Europace ; 16(3): 396-404, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24569894

RESUMO

Atrial fibrillation (AF) incidence is high in end-stage renal disease (ESRD) patients, and haemodialysis (HD) session may induce paroxysmal AF episodes. Structural atrium remodelling is common in ESRD patients, moreover, HD session induces rapid plasma electrolytes and blood volume changes, possibly favouring arrhythmia onset. Therefore, HD session represents a unique model to study in vivo the mechanisms potentially inducing paroxysmal AF episodes. Here, we present the case report of a patient in which HD regularly induced paroxysmal AF. In four consecutive sessions, heart rate variability analysis showed a progressive reduction of low/high frequency ratio before the AF onset, suggesting a relative increase in vagal activity. Moreover, all AF episodes were preceded by a great increase of supraventricular ectopic beats. We applied computational modelling of cardiac cellular electrophysiology to these clinical findings, using plasma electrolyte concentrations and heart rate to simulate patient conditions at the beginning of HD session (pre-HD) and right before the AF onset (pre-AF), in a human atrial action potential model. Simulation results provided evidence of a slower depolarization and a shortened refractory period in pre-AF vs. pre-HD, and these effects were enhanced when adding acetylcholine effect. Paroxysmal AF episodes are induced by the presence of a trigger that acts upon a favourable substrate on the background of autonomic nervous system changes and in the described case report all these three elements were present. Starting from these findings, here we review the possible mechanisms leading to intradialytic AF onset.


Assuntos
Potenciais de Ação , Fibrilação Atrial/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Modelos Cardiovasculares , Miócitos Cardíacos , Animais , Simulação por Computador , Humanos
9.
Pharmacol Res Perspect ; 11(1): e01059, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36748725

RESUMO

Levetiracetam (LEV), a well-established anti-seizure medication (ASM), was launched before the original ICH S7B nonclinical guidance assessing QT prolongation potential and the introduction of the Comprehensive In Vitro Proarrhythmia Assay (CiPA) paradigm. No information was available on its effects on cardiac channels. The goal of this work was to "pressure test" the CiPA approach with LEV and check the concordance of nonclinical core and follow-up S7B assays with clinical and post-marketing data. The following experiments were conducted with LEV (0.25-7.5 mM): patch clamp assays on hERG (acute or trafficking effects), NaV 1.5, CaV 1.2, Kir 2.1, KV 7.1/mink, KV 1.5, KV 4.3, and HCN4; in silico electrophysiology modeling (Virtual Assay® software) in control, large-variability, and high-risk human ventricular cell populations; electrophysiology measurements in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and dog Purkinje fibers; ECG measurements in conscious telemetered dogs after single oral administration (150, 300, and 600 mg/kg). Except a slight inhibition (<10%) of hERG and KV 7.1/mink at 7.5 mM, that is, 30-fold the free therapeutic plasma concentration (FTPC) at 1500 mg, LEV did not affect any other cardiac channels or hERG trafficking. In both virtual and real human cardiomyocytes, and in dog Purkinje fibers, LEV induced no relevant changes in electrophysiological parameters or arrhythmia. No QTc prolongation was noted up to 2.7 mM unbound plasma levels in conscious dogs, corresponding to 10-fold the FTPC. Nonclinical assessment integrating CiPA assays shows the absence of QT prolongation and proarrhythmic risk of LEV up to at least 10-fold the FTPC and the good concordance with clinical and postmarketing data, although this does not exclude very rare occurrence of QT prolongation cases in patients with underlying risk factors.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Animais , Cães , Humanos , Levetiracetam/farmacologia , Miócitos Cardíacos
10.
Front Vet Sci ; 10: 1185706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396988

RESUMO

The 3Rs principle of replacing, reducing and refining the use of animals in science has been gaining widespread support in the international research community and appears in transnational legislation such as the European Directive 2010/63/EU, a number of national legislative frameworks like in Switzerland and the UK, and other rules and guidance in place in countries around the world. At the same time, progress in technical and biomedical research, along with the changing status of animals in many societies, challenges the view of the 3Rs principle as a sufficient and effective approach to the moral challenges set by animal use in research. Given this growing awareness of our moral responsibilities to animals, the aim of this paper is to address the question: Can the 3Rs, as a policy instrument for science and research, still guide the morally acceptable use of animals for scientific purposes, and if so, how? The fact that the increased availability of alternatives to animal models has not correlated inversely with a decrease in the number of animals used in research has led to public and political calls for more radical action. However, a focus on the simple measure of total animal numbers distracts from the need for a more nuanced understanding of how the 3Rs principle can have a genuine influence as a guiding instrument in research and testing. Hence, we focus on three core dimensions of the 3Rs in contemporary research: (1) What scientific innovations are needed to advance the goals of the 3Rs? (2) What can be done to facilitate the implementation of existing and new 3R methods? (3) Do the 3Rs still offer an adequate ethical framework given the increasing social awareness of animal needs and human moral responsibilities? By answering these questions, we will identify core perspectives in the debate over the advancement of the 3Rs.

11.
Front Toxicol ; 4: 992650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278026

RESUMO

The preclinical identification of drug-induced cardiotoxicity and its translation into human risk are still major challenges in pharmaceutical drug discovery. The ICH S7B Guideline and Q&A on Clinical and Nonclinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential promotes human in silico drug trials as a novel tool for proarrhythmia risk assessment. To facilitate the use of in silico data in regulatory submissions, explanatory control compounds should be tested and documented to demonstrate consistency between predictions and the historic validation data. This study aims to quantify drug-induced electrophysiological effects on in silico cardiac human Purkinje cells, to compare them with existing in vitro rabbit data, and to assess their accuracy for clinical pro-arrhythmic risk predictions. The effects of 14 reference compounds were quantified in simulations with a population of in silico human cardiac Purkinje models. For each drug dose, five electrophysiological biomarkers were quantified at three pacing frequencies, and results compared with available in vitro experiments and clinical proarrhythmia reports. Three key results were obtained: 1) In silico, repolarization abnormalities in human Purkinje simulations predicted drug-induced arrhythmia for all risky compounds, showing higher predicted accuracy than rabbit experiments; 2) Drug-induced electrophysiological changes observed in human-based simulations showed a high degree of consistency with in vitro rabbit recordings at all pacing frequencies, and depolarization velocity and action potential duration were the most consistent biomarkers; 3) discrepancies observed for dofetilide, sotalol and terfenadine are mainly caused by species differences between humans and rabbit. Taken together, this study demonstrates higher accuracy of in silico methods compared to in vitro animal models for pro-arrhythmic risk prediction, as well as a high degree of consistency with in vitro experiments commonly used in safety pharmacology, supporting the potential for industrial and regulatory adoption of in silico trials for proarrhythmia prediction.

12.
Front Pharmacol ; 12: 604713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841140

RESUMO

Objectives: Improvements in human stem cell-derived cardiomyocyte (hSC-CM) technology have promoted their use for drug testing and disease investigations. Several in silico hSC-CM models have been proposed to augment interpretation of experimental findings through simulations. This work aims to assess the response of three hSC-CM in silico models (Koivumäki2018, Kernik2019, and Paci2020) to simulated drug action, and compare simulation results against in vitro data for 15 drugs. Methods: First, simulations were conducted considering 15 drugs, using a simple pore-block model and experimental data for seven ion channels. Similarities and differences were analyzed in the in silico responses of the three models to drugs, in terms of Ca2+ transient duration (CTD90) and occurrence of arrhythmic events. Then, the sensitivity of each model to different degrees of blockage of Na+ (INa), L-type Ca2+ (ICaL), and rapid delayed rectifying K+ (IKr) currents was quantified. Finally, we compared the drug-induced effects on CTD90 against the corresponding in vitro experiments. Results: The observed CTD90 changes were overall consistent among the in silico models, all three showing changes of smaller magnitudes compared to the ones measured in vitro. For example, sparfloxacin 10 µM induced +42% CTD90 prolongation in vitro, and +17% (Koivumäki2018), +6% (Kernik2019), and +9% (Paci2020) in silico. Different arrhythmic events were observed following drug application, mainly for drugs affecting IKr. Paci2020 and Kernik2019 showed only repolarization failure, while Koivumäki2018 also displayed early and delayed afterdepolarizations. The spontaneous activity was suppressed by Na+ blockers and by drugs with similar effects on ICaL and IKr in Koivumäki2018 and Paci2020, while only by strong ICaL blockers, e.g. nisoldipine, in Kernik2019. These results were confirmed by the sensitivity analysis. Conclusion: To conclude, The CTD90 changes observed in silico are qualitatively consistent with our in vitro data, although our simulations show differences in drug responses across the hSC-CM models, which could stem from variability in the experimental data used in their construction.

13.
Clin Transl Sci ; 14(3): 1133-1146, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33620150

RESUMO

We applied a set of in silico and in vitro assays, compliant with the Comprehensive In Vitro Proarrhythmia Assay (CiPA) paradigm, to assess the risk of chloroquine (CLQ) or hydroxychloroquine (OH-CLQ)-mediated QT prolongation and Torsades de Pointes (TdP), alone and combined with erythromycin (ERT) and azithromycin (AZI), drugs repurposed during the first wave of coronavirus disease 2019 (COVID-19). Each drug or drug combination was tested in patch clamp assays on seven cardiac ion channels, in in silico models of human ventricular electrophysiology (Virtual Assay) using control (healthy) or high-risk cell populations, and in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. In each assay, concentration-response curves encompassing and exceeding therapeutic free plasma levels were generated. Both CLQ and OH-CLQ showed blocking activity against some potassium, sodium, and calcium currents. CLQ and OH-CLQ inhibited IKr (half-maximal inhibitory concentration [IC50 ]: 1 µM and 3-7 µM, respectively) and IK1 currents (IC50 : 5 and 44 µM, respectively). When combining OH-CLQ with AZI, no synergistic effects were observed. The two macrolides had no or very weak effects on the ion currents (IC50  > 300-1000 µM). Using Virtual Assay, both antimalarials affected several TdP indicators, CLQ being more potent than OH-CLQ. Effects were more pronounced in the high-risk cell population. In hiPSC-derived cardiomyocytes, all drugs showed early after-depolarizations, except AZI. Combining CLQ or OH-CLQ with a macrolide did not aggravate their effects. In conclusion, our integrated nonclinical CiPA dataset confirmed that, at therapeutic plasma concentrations relevant for malaria or off-label use in COVID-19, CLQ and OH-CLQ use is associated with a proarrhythmia risk, which is higher in populations carrying predisposing factors but not worsened with macrolide combination.


Assuntos
Antimaláricos/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Tratamento Farmacológico da COVID-19 , Cloroquina/efeitos adversos , Hidroxicloroquina/efeitos adversos , Uso Off-Label , SARS-CoV-2 , Animais , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Eletrocardiografia/efeitos dos fármacos , Humanos , Canais Iônicos/efeitos dos fármacos
14.
Front Physiol ; 11: 314, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351400

RESUMO

The importance of electrolyte concentrations for cardiac function is well established. Electrolyte variations can lead to arrhythmias onset, due to their important role in the action potential (AP) genesis and in maintaining cell homeostasis. However, most of the human AP computer models available in literature were developed with constant electrolyte concentrations, and fail to simulate physiological changes induced by electrolyte variations. This is especially true for Ca2+, even in the O'Hara-Rudy model (ORd), one of the most widely used models in cardiac electrophysiology. Therefore, the present work develops a new human ventricular model (BPS2020), based on ORd, able to simulate the inverse dependence of AP duration (APD) on extracellular Ca2+ concentration ([Ca2+]o), and APD rate dependence at 4 mM extracellular K+. The main changes needed with respect to ORd are: (i) an increased sensitivity of L-type Ca2+ current inactivation to [Ca2+]o; (ii) a single compartment description of the sarcoplasmic reticulum; iii) the replacement of Ca2+ release. BPS2020 is able to simulate the physiological APD-[Ca2+]o relationship, while also retaining the well-reproduced properties of ORd (APD rate dependence, restitution, accommodation and current block effects). We also used BPS2020 to generate an experimentally-calibrated population of models to investigate: (i) the occurrence of repolarization abnormalities in response to hERG current block; (ii) the rate adaptation variability; (iii) the occurrence of alternans and delayed after-depolarizations at fast pacing. Our results indicate that we successfully developed an improved version of ORd, which can be used to investigate electrophysiological changes and pro-arrhythmic abnormalities induced by electrolyte variations and current block at multiple rates and at the population level.

15.
Clin Pharmacol Ther ; 107(1): 102-111, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709525

RESUMO

This white paper presents principles for validating proarrhythmia risk prediction models for regulatory use as discussed at the In Silico Breakout Session of a Cardiac Safety Research Consortium/Health and Environmental Sciences Institute/US Food and Drug Administration-sponsored Think Tank Meeting on May 22, 2018. The meeting was convened to evaluate the progress in the development of a new cardiac safety paradigm, the Comprehensive in Vitro Proarrhythmia Assay (CiPA). The opinions regarding these principles reflect the collective views of those who participated in the discussion of this topic both at and after the breakout session. Although primarily discussed in the context of in silico models, these principles describe the interface between experimental input and model-based interpretation and are intended to be general enough to be applied to other types of nonclinical models for proarrhythmia assessment. This document was developed with the intention of providing a foundation for more consistency and harmonization in developing and validating different models for proarrhythmia risk prediction using the example of the CiPA paradigm.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Simulação por Computador , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Medição de Risco/métodos , Arritmias Cardíacas/prevenção & controle , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Humanos , Modelos Teóricos , Estudos de Validação como Assunto
16.
Br J Pharmacol ; 176(19): 3819-3833, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271649

RESUMO

BACKGROUND AND PURPOSE: Early identification of drug-induced cardiac adverse events is key in drug development. Human-based computer models are emerging as an effective approach, complementary to in vitro and animal models. Drug-induced shortening of the electromechanical window has been associated with increased risk of arrhythmias. This study investigates the potential of a cellular surrogate for the electromechanical window (EMw) for prediction of pro-arrhythmic cardiotoxicity, and its underlying ionic mechanisms, using human-based computer models. EXPERIMENTAL APPROACH: In silico drug trials for 40 reference compounds were performed, testing up to 100-fold the therapeutic concentrations (EFTPCmax ) and using a control population of human ventricular action potential (AP) models, optimised to capture pro-arrhythmic ionic profiles. EMw was calculated for each model in the population as the difference between AP and Ca2+ transient durations at 90%. Drug-induced changes in the EMw and occurrence of repolarisation abnormalities (RA) were quantified. KEY RESULTS: Drugs with clinical risk of Torsade de Pointes arrhythmias induced a concentration-dependent EMw shortening, while safe drugs lead to increase or small change in EMw. Risk predictions based on EMw shortening achieved 90% accuracy at 10× EFTPCmax , whereas RA-based predictions required 100× EFTPCmax to reach the same accuracy. As it is dependent on Ca2+ transient, the EMw was also more sensitive than AP prolongation in distinguishing between pure hERG blockers and multichannel compounds also blocking the calcium current. CONCLUSION AND IMPLICATIONS: The EMw is an effective biomarker for in silico predictions of drug-induced clinical pro-arrhythmic risk, particularly for compounds with multichannel blocking action.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Simulação por Computador , Eletrocardiografia/efeitos dos fármacos , Preparações Farmacêuticas/química , Potenciais de Ação/efeitos dos fármacos , Biomarcadores/análise , Humanos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Ligantes , Modelos Biológicos , Fatores de Risco , Função Ventricular/efeitos dos fármacos
17.
Front Pharmacol ; 10: 1643, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082155

RESUMO

Torsades de Pointes (TdP) is a type of ventricular arrhythmia which could be observed as an unwanted drug-induced cardiac side effect, and it is associated with repolarization abnormalities in single cells. The pharmacological evaluations of TdP risk in previous years mainly focused on the hERG channel due to its vital role in the repolarization of cardiomyocytes. However, only considering drug effects on hERG led to false positive predictions since the drug action on other ion channels can also have crucial regulatory effects on repolarization. To address the limitation of only evaluating hERG, the Comprehensive in Vitro Proarrhythmia Assay initiative has proposed to systematically integrate drug effects on multiple ion channels into in silico drug trial to improve TdP risk assessment. It is not clear how many ion channels are sufficient for reliable TdP risk predictions, and whether differences in IC50 and Hill coefficient values from independent sources can lead to divergent in silico prediction outcomes. The rationale of this work is to investigate the above two questions using a computationally efficient population of human ventricular cells optimized to favor repolarization abnormality. Our blinded results based on two independent data sources confirm that simulations with the optimized population of human ventricular cell models enable efficient in silico drug screening, and also provide direct observation and mechanistic analysis of repolarization abnormality. Our results show that 1) the minimum set of ion channels required for reliable TdP risk predictions are Nav1.5 (peak), Cav1.2, and hERG; 2) for drugs with multiple ion channel blockage effects, moderate IC50 variations combined with variable Hill coefficients can affect the accuracy of in silico predictions.

18.
Elife ; 82019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31868580

RESUMO

Human-based modelling and simulations are becoming ubiquitous in biomedical science due to their ability to augment experimental and clinical investigations. Cardiac electrophysiology is one of the most advanced areas, with cardiac modelling and simulation being considered for virtual testing of pharmacological therapies and medical devices. Current models present inconsistencies with experimental data, which limit further progress. In this study, we present the design, development, calibration and independent validation of a human-based ventricular model (ToR-ORd) for simulations of electrophysiology and excitation-contraction coupling, from ionic to whole-organ dynamics, including the electrocardiogram. Validation based on substantial multiscale simulations supports the credibility of the ToR-ORd model under healthy and key disease conditions, as well as drug blockade. In addition, the process uncovers new theoretical insights into the biophysical properties of the L-type calcium current, which are critical for sodium and calcium dynamics. These insights enable the reformulation of L-type calcium current, as well as replacement of the hERG current model.


Decades of intensive experimental and clinical research have revealed much about how the human heart works. Though incomplete, this knowledge has been used to construct computer models that represent the activity of this organ as a whole, and of its individual chambers (the atria and ventricles), tissues and cells. Such models have been used to better understand life-threatening irregular heartbeats; they are also beginning to be used to guide decisions about the treatment of patients and the development of new drugs by the pharmaceutical industry. Yet existing computer models of the electrical activity of the human heart are sometimes inconsistent with experimental data. This problem led Tomek et al. to try to create a new model that was consistent with established biophysical knowledge and experimental data for a wide range of conditions including disease and drug action. Tomek et al. designed a strategy that explicitly separated the construction and validation of a model that could recreate the electrical activity of the ventricles in a human heart. This model was able to integrate and explain a wide range of properties of both healthy and diseased hearts, including their response to different drugs. The development of the model also uncovered and resolved theoretical inconsistencies that have been present in almost all models of the heart from the last 25 years. Tomek et al. hope that their new human heart model will enable more basic, translational and clinical research into a range of heart diseases and accelerate the development of new therapies.


Assuntos
Potenciais de Ação/fisiologia , Modelos Cardiovasculares , Miócitos Cardíacos , Algoritmos , Biofísica , Cálcio/química , Cálcio/metabolismo , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Calibragem , Simulação por Computador , Eletrocardiografia , Fenômenos Eletrofisiológicos , Eletrofisiologia , Acoplamento Excitação-Contração , Cardiopatias/fisiopatologia , Ventrículos do Coração/patologia , Humanos , Sódio/química , Sódio/metabolismo
19.
Heart Rhythm ; 14(11): 1704-1712, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28756098

RESUMO

BACKGROUND: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are in vitro models with the clear advantages of their human origin and suitability for human disease investigations. However, limitations include their incomplete characterization and variability reported in different cell lines and laboratories. OBJECTIVE: The purpose of this study was to investigate in silico ionic mechanisms potentially explaining the phenotypic variability of hiPSC-CMs in long QT syndrome type 3 (LQT3) and their response to antiarrhythmic drugs. METHODS: Populations of in silico hiPSC-CM models were constructed and calibrated for control (n = 1,463 models) and LQT3 caused by INaL channelopathy (n = 1,401 models), using experimental recordings for late sodium current (INaL) and action potentials (APs). Antiarrhythmic drug therapy was evaluated by simulating mexiletine and ranolazine multichannel effects. RESULTS: As in experiments, LQT3 hiPSC-CMs yield prolonged action potential duration at 90% repolarization (APD90) (+34.3% than controls) and large electrophysiological variability. LQT3 hiPSC-CMs with symptomatic APs showed overexpression of ICaL, IK1, and INaL, underexpression of IKr, and increased sensitivity to both drugs compared to asymptomatic LQT3 models. Simulations showed that both mexiletine and ranolazine corrected APD prolongation in the LQT3 population but also highlighted differences in drug response. Mexiletine stops spontaneous APs in more LQT3 hiPSC-CMs models than ranolazine (784/1,401 vs 53/1,401) due to its stronger action on INa. CONCLUSION: In silico simulations demonstrate our ability to recapitulate variability in LQT3 and control hiPSC-CM phenotypes, and the ability of mexiletine and ranolazine to reduce APD prolongation, in agreement with experiments. The in silico models also identify potential ionic mechanisms of phenotypic variability in LQT3 hiPSC-CMs, explaining APD prolongation in symptomatic vs asymptomatic LQT3 hiPSC-CMs.


Assuntos
Doença do Sistema de Condução Cardíaco/tratamento farmacológico , Células-Tronco Pluripotentes Induzidas/patologia , Síndrome do QT Longo/tratamento farmacológico , Mexiletina/farmacologia , Miócitos Cardíacos/patologia , Potenciais de Ação , Antiarrítmicos/farmacologia , Variação Biológica da População , Doença do Sistema de Condução Cardíaco/patologia , Doença do Sistema de Condução Cardíaco/fisiopatologia , Linhagem Celular , Simulação por Computador , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Síndrome do QT Longo/patologia , Síndrome do QT Longo/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp
20.
Front Physiol ; 8: 668, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955244

RESUMO

Early prediction of cardiotoxicity is critical for drug development. Current animal models raise ethical and translational questions, and have limited accuracy in clinical risk prediction. Human-based computer models constitute a fast, cheap and potentially effective alternative to experimental assays, also facilitating translation to human. Key challenges include consideration of inter-cellular variability in drug responses and integration of computational and experimental methods in safety pharmacology. Our aim is to evaluate the ability of in silico drug trials in populations of human action potential (AP) models to predict clinical risk of drug-induced arrhythmias based on ion channel information, and to compare simulation results against experimental assays commonly used for drug testing. A control population of 1,213 human ventricular AP models in agreement with experimental recordings was constructed. In silico drug trials were performed for 62 reference compounds at multiple concentrations, using pore-block drug models (IC50/Hill coefficient). Drug-induced changes in AP biomarkers were quantified, together with occurrence of repolarization/depolarization abnormalities. Simulation results were used to predict clinical risk based on reports of Torsade de Pointes arrhythmias, and further evaluated in a subset of compounds through comparison with electrocardiograms from rabbit wedge preparations and Ca2+-transient recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). Drug-induced changes in silico vary in magnitude depending on the specific ionic profile of each model in the population, thus allowing to identify cell sub-populations at higher risk of developing abnormal AP phenotypes. Models with low repolarization reserve (increased Ca2+/late Na+ currents and Na+/Ca2+-exchanger, reduced Na+/K+-pump) are highly vulnerable to drug-induced repolarization abnormalities, while those with reduced inward current density (fast/late Na+ and Ca2+ currents) exhibit high susceptibility to depolarization abnormalities. Repolarization abnormalities in silico predict clinical risk for all compounds with 89% accuracy. Drug-induced changes in biomarkers are in overall agreement across different assays: in silico AP duration changes reflect the ones observed in rabbit QT interval and hiPS-CMs Ca2+-transient, and simulated upstroke velocity captures variations in rabbit QRS complex. Our results demonstrate that human in silico drug trials constitute a powerful methodology for prediction of clinical pro-arrhythmic cardiotoxicity, ready for integration in the existing drug safety assessment pipelines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA