Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Musculoskelet Disord ; 23(1): 422, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513813

RESUMO

BACKGROUND: Suture anchors (SAs) made of human allogenic mineralized cortical bone matrix are among the newest developments in orthopaedic and trauma surgery. Biomechanical properties of an allogenic mineralized suture anchor (AMSA) are not investigated until now. The primary objective was the biomechanical investigation of AMSA and comparing it to a metallic suture anchor (MSA) and a bioabsorbable suture anchor (BSA) placed at the greater tuberosity of the humeral head of cadaver humeri. Additionally, we assessed the biomechanical properties of the SAs with bone microarchitecture parameters. METHODS: First, bone microarchitecture of 12 fresh frozen human cadaver humeri from six donors was analyzed by high-resolution peripheral quantitative computed tomography. In total, 18 AMSAs, 9 MSAs, and 9 BSAs were implanted at a 60° angle. All three SA systems were systematically implanted alternating in three positions within the greater tuberosity (position 1: anterior, position 2: central, position 3: posterior) with a distance of 15 mm to each other. Biomechanical load to failure was measured in a uniaxial direction at 135°. RESULTS: Mean age of all specimens was 53.6 ± 9.1 years. For all bone microarchitecture measurements, linear regression slope estimates were negative which implies decreasing values with increasing age of specimens. Positioning of all three SA systems at the greater tuberosity was equally distributed (p = 0.827). Mean load to failure rates were higher for AMSA compared to MSA and BSA without reaching statistical significance between the groups (p = 0.427). Anchor displacement was comparable for all three SA systems, while there were significant differences regarding failure mode between all three SA systems (p < 0.001). Maximum load to failure was reached in all cases for AMSA, in 44.4% for MSA, and in 55.6% for BSA. Suture tear was observed in 55.6% for MSA and in 22.2% for BSA. Anchor breakage was solely seen for BSA (22.2%). No correlations were observed between bone microarchitecture parameters and load to failure rates of all three suture anchor systems. CONCLUSIONS: The AMSA showed promising biomechanical properties for initial fixation strength for RCR. Since reduced BMD is an important issue for patients with chronic rotator cuff lesions, the AMSA is an interesting alternative to MSA and BSA. Also, the AMSA could improve healing of the enthesis.


Assuntos
Lesões do Manguito Rotador , Âncoras de Sutura , Adulto , Amsacrina , Fenômenos Biomecânicos , Cadáver , Osso Cortical , Humanos , Pessoa de Meia-Idade , Manguito Rotador/diagnóstico por imagem , Manguito Rotador/cirurgia , Lesões do Manguito Rotador/diagnóstico por imagem , Lesões do Manguito Rotador/cirurgia , Técnicas de Sutura
2.
Life (Basel) ; 12(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35888116

RESUMO

The case describes the revision of an upper ankle prosthesis because of loosening. When ankle replacement is the first choice and actual bone quality does not allow a replacement of the prosthesis, arthrodesis is the only way of reducing pain and gaining stability. The amount of missing bone due to the removed prosthesis was severe. Shark Screws®, made of human allograft cortical bone, were used to fix an allograft femoral head and tibia as well as fibula and talus to each other for stabilization. This was performed without any autologous bone graft and without metal screws. The human matrix of the cortical allograft allows the creation of new vessels followed by osteoblastic activity and production of new bone. The revascularization of the allografts reduces the risk of infection and wound problems. Over time, the patient's bone metabolism allows the allografts to be remodeled into the patient's bone. The case reported here had severe multimorbidity. The loosening of the prosthesis mainly affected the ability to perform housework, mobility, enjoying leisure, and it had a great impact on the emotion and well-being of the patient. One year after surgery, the patient is very satisfied to be able to walk without pain and scratches for about 90 min.

3.
Life (Basel) ; 11(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073841

RESUMO

Hallux rigidus is degenerative arthritis of the first metatarsophalangeal joint characterized by pain and stiffness in the joint with limitation of motion and functional impairment. Recently, bone grafts have been introduced in orthopedic procedures, namely osteosynthesis and arthrodesis. Allografts can induce bone formation, provide support for vascular and bone ingrowth and have a low risk of immunological rejection. A 52-year-old female patient with hallux rigidus underwent arthrodesis of the first metatarsophalangeal joint using Shark Screw® made of allogenic cortical bone. Corrective surgery was performed after 10 weeks, and a 5 × 3 mm large part of the Shark Screw® with the surrounding patient's bone was removed. A histological evaluation revealed a vascularized graft with the newly formed compact lamellar bone fitting exactly to the cortical graft. The bone surface was lined by plump osteoblasts with osteoid production, and osteocytes were present in the lacunae. The arthrodesis of the first metatarsophalangeal joint using an allogenic cortical bone graft results in fast, primary bone healing without immunological rejection. This case suggests that the cortical allograft is a good and safe treatment option with an excellent graft incorporation into the host bone. However, as the literature evaluating the histology of different bone grafts is scarce, further high-level evidence studies with adequate sample sizes are needed to confirm our findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA