RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019, which ranges from fatal disease in some to mild or subclinical in most affected individuals. Many recovered human patients report persistent respiratory signs; however, lung disease in post-acute infection is poorly understood. Our objective was to describe histologic lung lesions and viral loads following experimental SARS-CoV-2 infection in 11 cats. Microscopic evaluation at 3, 6, 10, or 28 days postinoculation (DPI) identified mild to moderate patchy interstitial pneumonia, bronchiolar epithelial damage, and occlusive histiocytic bronchiolitis. Based on immunohistochemistry, alveolar septal thickening was due to CD204-positive macrophages, fewer B and T lymphocytes, type II pneumocytes, and capillary proliferation with a relative dearth of fibrosis. In blood vessel endothelium, there was reactive hypertrophy or vacuolar degeneration and increased MHC II expression at all time points. Unexpectedly, one cat from the 28 DPI group had severe subacute regionally extensive lymphohistiocytic pneumonia with multifocal consolidation, vasculitis, and alveolar fibrin. Reverse transcriptase-quantitative polymerase chain reaction identified SARS-CoV-2 RNA within the lung at 3 and 6 DPI, and viral RNA was below the limit of detection at 10 and 28 DPI, suggesting that pulmonary lesions persist beyond detection of viral RNA. These findings clarify our comparative understanding of disease induced by SARS-CoV-2 and suggest that cats can serve as an informative model to study post-acute pulmonary sequelae.
Assuntos
COVID-19 , Doenças do Gato , Animais , COVID-19/veterinária , Doenças do Gato/patologia , Gatos , Humanos , Imuno-Histoquímica , Pulmão/patologia , RNA Viral , SARS-CoV-2RESUMO
Ductal plate malformations are abnormalities in the liver that arise from inappropriate or incomplete remodeling of the embryologic ductal plate. Various types of ductal plate malformations are reported in the human and veterinary literature, most commonly affecting domestic mammalian species but also fish. We investigated the occurrence and described the histopathologic features of ductal plate malformations in captive snakes. Malformations were identified in 18 snakes: 10 colubrids, 6 vipers, and 2 boids. There was no sex predilection, and the mean age was 17 years. The majority of lesions were incidental with most snakes having one or more comorbidities, most commonly neoplasia or systemic inflammation, that resulted in natural death or euthanasia. Ductal plate malformations in all livers were broadly characterized by a well-demarcated nodule of irregular bile ducts embedded within a varying amount of fibrous stroma. Malformations were further categorized based on the amount of fibrous stroma and dilation of the bile ducts as von Meyenburg complexes, cystic liver disease, and/or an intermediate hybrid subtype representative of cysts arising within von Meyenburg complexes. Histochemical and immunohistochemical staining, including Gomori's trichome and pan-cytokeratin, respectively, were applied on select cases to confirm histologic features. Malignant transformation was not identified within this population.