Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866050

RESUMO

The field of computational pathology[1,2] has witnessed remarkable progress in the development of both task-specific predictive models and task-agnostic self-supervised vision encoders[3,4]. However, despite the explosive growth of generative artificial intelligence (AI), there has been limited study on building general purpose, multimodal AI assistants and copilots[5] tailored to pathology. Here we present PathChat, a vision-language generalist AI assistant for human pathology. We build PathChat by adapting a foundational vision encoder for pathology, combining it with a pretrained large language model and finetuning the whole system on over 456,000 diverse visual language instructions consisting of 999,202 question-answer turns. We compare PathChat against several multimodal vision language AI assistants and GPT4V, which powers the commercially available multimodal general purpose AI assistant ChatGPT-4[7]. PathChat achieved state-of-the-art performance on multiple-choice diagnostic questions from cases of diverse tissue origins and disease models. Furthermore, using open-ended questions and human expert evaluation, we found that overall PathChat produced more accurate and pathologist-preferable responses to diverse queries related to pathology. As an interactive and general vision-language AI Copilot that can flexibly handle both visual and natural language inputs, PathChat can potentially find impactful applications in pathology education, research, and human-in-the-loop clinical decision making.

2.
Am J Dermatopathol ; 45(10): 704-707, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37708369

RESUMO

BACKGROUND: Atypical fibroxanthoma (AFX) is a dermal-based, low-grade neoplasm with no specific lineage of differentiation. The occurrence of AFX with osteoclast-like giant cells is exceptionally rare. Less than 20 cases have been reported in the literature. CASE PRESENTATION: A 77-year-old man with a medical history of multiple basal and squamous cell carcinomas of the skin, presented with a progressively growing erythematous nodule on the sun-damaged right central parietal scalp. A shave biopsy showed a dermal spindle cell proliferation accompanied by numerous osteoclast-like multinucleated giant cells and predominant atypical mitotic figures. The immunohistochemical staining showed a diffuse positive staining for CD68 and SMA, patchy staining for CD10, and negative staining for SOX-10, pan-cytokeratin, CK5/6, S100, CD34, and desmin. The tumor was completely excised with negative margins. A subsequent follow-up over a period of 13 months showed no recurrence. CONCLUSION: Distinguishing AFX with osteoclast-like giant cells from both malignant and benign skin lesions with osteoclast-like giant cells is crucial. Although AFX tumors display worrisome malignant histologic features, most cases have a favorable prognosis with a local recurrence rate below 5% and exceedingly rare metastasis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Masculino , Humanos , Idoso , Osteoclastos , Neoplasias Cutâneas/cirurgia , Pele , Células Gigantes
6.
Int J Surg Pathol ; 32(3): 433-448, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37437093

RESUMO

Background. Whole slide imaging (WSI) represents a paradigm shift in pathology, serving as a necessary first step for a wide array of digital tools to enter the field. It utilizes virtual microscopy wherein glass slides are converted into digital slides and are viewed by pathologists by automated image analysis. Its impact on pathology workflow, reproducibility, dissemination of educational material, expansion of service to underprivileged areas, and institutional collaboration exemplifies a significant innovative movement. The recent US Food and Drug Administration approval to WSI for its use in primary surgical pathology diagnosis has opened opportunities for wider application of this technology in routine practice. Main Text. The ongoing technological advances in digital scanners, image visualization methods, and the integration of artificial intelligence-derived algorithms with these systems provide avenues to exploit its applications. Its benefits are innumerable such as ease of access through the internet, avoidance of physical storage space, and no risk of deterioration of staining quality or breakage of slides to name a few. Although the benefits of WSI to pathology practices are many, the complexities of implementation remain an obstacle to widespread adoption. Some barriers including the high cost, technical glitches, and most importantly professional hesitation to adopt a new technology have hindered its use in routine pathology. Conclusions. In this review, we summarize the technical aspects of WSI, its applications in diagnostic pathology, training, and research along with future perspectives. It also highlights improved understanding of the current challenges to implementation, as well as the benefits and successes of the technology. WSI provides a golden opportunity for pathologists to guide its evolution, standardization, and implementation to better acquaint them with the key aspects of this technology and its judicial use. Also, implementation of routine digital pathology is an extra step requiring resources which (currently) does not usually result increased efficiency or payment.


Assuntos
Inteligência Artificial , Patologia Cirúrgica , Humanos , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Patologia Cirúrgica/métodos
7.
Arch Pathol Lab Med ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38871349

RESUMO

CONTEXT.­: Computational pathology combines clinical pathology with computational analysis, aiming to enhance diagnostic capabilities and improve clinical productivity. However, communication barriers between pathologists and developers often hinder the full realization of this potential. OBJECTIVE.­: To propose a standardized framework that improves mutual understanding of clinical objectives and computational methodologies. The goal is to enhance the development and application of computer-aided diagnostic (CAD) tools. DESIGN.­: The article suggests pivotal roles for pathologists and computer scientists in the CAD development process. It calls for increased understanding of computational terminologies, processes, and limitations among pathologists. Similarly, it argues that computer scientists should better comprehend the true use cases of the developed algorithms to avoid clinically meaningless metrics. RESULTS.­: CAD tools improve pathology practice significantly. Some tools have even received US Food and Drug Administration approval. However, improved understanding of machine learning models among pathologists is essential to prevent misuse and misinterpretation. There is also a need for a more accurate representation of the algorithms' performance compared to that of pathologists. CONCLUSIONS.­: A comprehensive understanding of computational and clinical paradigms is crucial for overcoming the translational gap in computational pathology. This mutual comprehension will improve patient care through more accurate and efficient disease diagnosis.

8.
J Appl Lab Med ; 8(1): 145-161, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36610432

RESUMO

BACKGROUND: Network-connected medical devices have rapidly proliferated in the wake of recent global catalysts, leaving clinical laboratories and healthcare organizations vulnerable to malicious actors seeking to ransom sensitive healthcare information. As organizations become increasingly dependent on integrated systems and data-driven patient care operations, a sudden cyberattack and the associated downtime can have a devastating impact on patient care and the institution as a whole. Cybersecurity, information security, and information assurance principles are, therefore, vital for clinical laboratories to fully prepare for what has now become inevitable, future cyberattacks. CONTENT: This review aims to provide a basic understanding of cybersecurity, information security, and information assurance principles as they relate to healthcare and the clinical laboratories. Common cybersecurity risks and threats are defined in addition to current proactive and reactive cybersecurity controls. Information assurance strategies are reviewed, including traditional castle-and-moat and zero-trust security models. Finally, ways in which clinical laboratories can prepare for an eventual cyberattack with extended downtime are discussed. SUMMARY: The future of healthcare is intimately tied to technology, interoperability, and data to deliver the highest quality of patient care. Understanding cybersecurity and information assurance is just the first preparative step for clinical laboratories as they ensure the protection of patient data and the continuity of their operations.


Assuntos
Serviços de Laboratório Clínico , Laboratórios Clínicos , Humanos , Atenção à Saúde , Segurança Computacional
9.
J Pathol Inform ; 14: 100177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36654741

RESUMO

Machine learning has been leveraged for image analysis applications throughout a multitude of subspecialties. This position paper provides a perspective on the evolutionary trajectory of practical deep learning tools for genitourinary pathology through evaluating the most recent iterations of such algorithmic devices. Deep learning tools for genitourinary pathology demonstrate potential to enhance prognostic and predictive capacity for tumor assessment including grading, staging, and subtype identification, yet limitations in data availability, regulation, and standardization have stymied their implementation.

10.
Pathol Res Pract ; 251: 154843, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37826873

RESUMO

BACKGROUND: The establishment of minimum standards for display selection for the whole slide image (WSI) interpretation has not been fully defined. Recently, pathologists have increasingly preferred using remote displays for clinical diagnostics. Our study aims to assess and compare the performance of three fixed work displays and one remote personal display in accurately identifying ten selected pathologic features integrated into WSIs. DESIGN: Hematoxylin and eosin-stained glass slides were digitized using Philips scanners. Seven practicing pathologists and three residents reviewed ninety WSIs to identify ten pathologic features using the LG, Dell, and Samsung and an optional consumer-grade display. Ten pathologic features included eosinophils, neutrophils, plasma cells, granulomas, necrosis, mucin, hemosiderin, crystals, nucleoli, and mitoses. RESULTS: The accuracy of the identification of ten features on different types of displays did not significantly differ among the three types of "fixed" workplace displays. The highest accuracy was observed for the identification of neutrophils, eosinophils, plasma cells, granuloma, and mucin. On the other hand, a lower accuracy was observed for the identification of crystals, mitoses, necrosis, hemosiderin, and nucleoli. Participant pathologists and residents preferred the use of larger displays (>30″) with a higher pixel count, resolution, and luminance. CONCLUSION: Most features can be identified using any display. However, certain features posed more challenges across the three fixed display types. Furthermore, the use of a remote personal consumer-grade display chosen according to the pathologists' preference showed similar feature identification accuracy. Several factors of display characteristics seemed to influence pathologists' display preferences such as the display size, color, contrast ratio, pixel count, and luminance calibration. This study supports the use of standard "unlocked" vendor-agnostic displays for clinical digital pathology workflow rather than purchasing "locked" and more expensive displays that are part of a digital pathology system.


Assuntos
Microscopia , Patologia Cirúrgica , Humanos , Microscopia/métodos , Patologia Cirúrgica/métodos , Hemossiderina , Mucinas , Necrose
11.
Urol Case Rep ; 42: 102023, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35530542

RESUMO

Anastomosing hemangioma (AH), a rare benign genitourinary tract hemangioma is subject to frequent misdiagnosis due to its rarity and clinical, histological, and immunohistochemical similarities it shares with several diagnoses, including well-differentiated angiosarcoma (AS). This is particularly true of angiosarcoma, nearly identical to AH when presented in tissue samples of limited size. Lack of specific clinical and radiologic manifestations on initial preoperative assessment, coupled with limited diagnostic experience or awareness, can lead to misinterpretation of this entity, potentially leading to unnecessary clinical management. We present an initial misdiagnosis of AS which, upon review of the entire lesion, was identified as AH.

12.
Surg Pathol Clin ; 15(4): 759-785, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36344188

RESUMO

As machine learning (ML) solutions for genitourinary pathology image analysis are fostered by a progressively digitized laboratory landscape, these integrable modalities usher in a revolution in histopathological diagnosis. As technology advances, limitations stymying clinical artificial intelligence (AI) will not be extinguished without thorough validation and interrogation of ML tools by pathologists and regulatory bodies alike. ML solutions deployed in clinical settings for applications in prostate pathology yield promising results. Recent breakthroughs in clinical artificial intelligence for genitourinary pathology demonstrate unprecedented generalizability, heralding prospects for a future in which AI-driven assistive solutions may be seen as laboratory faculty, rather than novelty.


Assuntos
Inteligência Artificial , Patologistas , Humanos , Processamento de Imagem Assistida por Computador
13.
Diagnostics (Basel) ; 12(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892487

RESUMO

Diagnostic devices, methodological approaches, and traditional constructs of clinical pathology practice, cultivated throughout centuries, have transformed radically in the wake of explosive technological growth and other, e.g., environmental, catalysts of change. Ushered into the fray of modern laboratory medicine are digital imaging devices and machine-learning (ML) software fashioned to mitigate challenges, e.g., practitioner shortage while preparing clinicians for emerging interconnectivity of environments and diagnostic information in the era of big data. As computer vision shapes new constructs for the modern world and intertwines with clinical medicine, cultivating clarity of our new terrain through examining the trajectory and current scope of computational pathology and its pertinence to clinical practice is vital. Through review of numerous studies, we find developmental efforts for ML migrating from research to standardized clinical frameworks while overcoming obstacles that have formerly curtailed adoption of these tools, e.g., generalizability, data availability, and user-friendly accessibility. Groundbreaking validatory efforts have facilitated the clinical deployment of ML tools demonstrating the capacity to effectively aid in distinguishing tumor subtype and grade, classify early vs. advanced cancer stages, and assist in quality control and primary diagnosis applications. Case studies have demonstrated the benefits of streamlined, digitized workflows for practitioners alleviated by decreased burdens.

14.
J Pathol Inform ; 13: 100112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268081

RESUMO

Digital workflow transformation continues to sweep throughout a diversity of pathology departments spanning the globe following catalyzation of whole slide imaging (WSI) adoption by the SARS-CoV-2 (COVID-19) pandemic. The utility of WSI for a litany of use cases including primary diagnosis has been emphasized during this period, with WSI scanning devices gaining the approval of healthcare regulatory bodies and practitioners alike for clinical applications following extensive validatory efforts. As successful validation for WSI is predicated upon pathologist diagnostic interpretability of digital images with high glass slide concordance, departmental adoption of WSI is tantamount to the reliability of such images often predicated upon quality assessment notwithstanding image interpretability but extending to quality of practice following WSI adoption. Metrics of importance within this context include failure rates inclusive of different scanning errors that result in poor image quality and the potential such errors may incur upon departmental turnaround time (TAT). We sought to evaluate the impact of WSI implementation through retrospective evaluation of scan failure frequency in archival versus newly prepared slides, types of scanning error, and impact upon TAT following commencement of live WSI operation in May 2017 until the present period within a fully digitized high-volume academic institution. A 1.19% scan failure incidence rate was recorded during this period, with re-scanning requested and successfully executed for 1.19% of cases during the reported period of January 2019 until present. No significant impact upon TAT was deduced, suggesting an outcome which may be encouraging for departments considering digital workflow adoption.

15.
J Pathol Inform ; 12: 50, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35070479

RESUMO

Digital pathology (DP) has disrupted the practice of traditional pathology, including applications in education, research, and clinical practice. Contemporary whole slide imaging (WSI) devices include technological advances that help address some of the challenges facing modern pathology, such as increasing workloads with fewer subspecialized pathologists, expanding integrated delivery networks with global reach, and greater customization when working up cases for precision medicine. This review focuses on integral hardware components of 43 market available and soon-to-be released digital WSI devices utilized throughout the world. Components such as objective lens type and magnification, scanning camera, illumination, and slide capacity were evaluated with respect to scan time, throughput, accuracy of scanning, and image quality. This analysis of assorted modern WSI devices offers essential, valuable information for successfully selecting and implementing a digital WSI solution for any given pathology practice.

16.
Indian J Pathol Microbiol ; 66(1): 234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656259
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA