Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 223(2): 253-8, 2003 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12829295

RESUMO

Budding marks initiation of cell division in Saccharomyces cerevisiae. Consequently, cell cycle progression can be monitored by the fraction of budded cells (budding index) in a proliferating cell population. We determined the budding index of a large collection of deletion strains, to systematically identify genes involved in cell cycle progression.


Assuntos
Deleção de Genes , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Homozigoto , Saccharomyces cerevisiae/crescimento & desenvolvimento , Vacúolos/fisiologia
2.
Small GTPases ; 4(3): 174-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23648943

RESUMO

Vesicle trafficking is crucial for delivery of membrane compartments as well as signaling molecules to specific sites on the plasma membrane for regulation of diverse processes such as cell division, migration, polarity establishment and secretion. Rho GTPases are well-studied signaling molecules that regulate actin cytoskeleton in response to variety of extracellular stimuli. Increasing amounts of evidence suggest that Rho proteins play a critical role in vesicle trafficking in both the exocytic and endocytic pathways; however, the molecular mechanism underlying the process remains largely unclear. We recently defined a mechanism of action for RhoA in membrane trafficking pathways through regulation of the octameric complex exocyst in a manuscript published in Developmental Cell. We have shown that microtubule-associated RhoA-activating factor GEF-H1 is involved in endocytic and excocytic vesicle trafficking. GEF-H1 activates RhoA in response to RalA GTPase, which in turn regulates the localization and the assembly of exocyst components and exocytosis. Our work defines a mechanism for RhoA activation in response to RalA signaling and during vesicle trafficking. These results provide a framework for understanding how RhoA/GEF-H1 regulates the coordination of actin and microtubule cytoskeleton modulation and vesicle trafficking during migration and cell division.


Assuntos
Citoesqueleto/metabolismo , Exossomos/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Actinas/metabolismo , Animais , Movimento Celular , Exocitose , Microtúbulos/metabolismo , Interferência de RNA , Ratos , Fatores de Troca de Nucleotídeo Guanina Rho/antagonistas & inibidores , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Transdução de Sinais , Proteínas ral de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
3.
Dev Cell ; 23(2): 397-411, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22898781

RESUMO

The exocyst complex plays a critical role in targeting and tethering vesicles to specific sites of the plasma membrane. These events are crucial for polarized delivery of membrane components to the cell surface, which is critical for cell motility and division. Though Rho GTPases are involved in regulating actin dynamics and membrane trafficking, their role in exocyst-mediated vesicle targeting is not very clear. Herein, we present evidence that depletion of GEF-H1, a guanine nucleotide exchange factor for Rho proteins, affects vesicle trafficking. Interestingly, we found that GEF-H1 directly binds to exocyst component Sec5 in a Ral GTPase-dependent manner. This interaction promotes RhoA activation, which then regulates exocyst assembly/localization and exocytosis. Taken together, our work defines a mechanism for RhoA activation in response to RalA-Sec5 signaling and involvement of GEF-H1/RhoA pathway in the regulation of vesicle trafficking.


Assuntos
Exocitose , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Microtúbulos/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Transporte Biológico , Ativação Enzimática , Fatores de Troca do Nucleotídeo Guanina/genética , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Ligação Proteica , Fatores de Troca de Nucleotídeo Guanina Rho , Transdução de Sinais
4.
Biochem Biophys Res Commun ; 361(3): 700-4, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17673172

RESUMO

Initiation of cell division is controlled by an irreversible switch. In Saccharomyces cerevisiae degradation of the Sic1p protein, an inhibitor of mitotic cyclin/cyclin-dependent kinase complexes, takes place before initiation of DNA replication, at a point called START. Sic1p is phosphorylated by multiple kinases, which can differentially affect the stability of Sic1p. How phosphorylations that stabilize Sic1p are reversed is unknown. Here we show that the Dcr2p phosphatase functionally and physically interacts with Sic1p. Over-expression of Dcr2p destabilizes Sic1p and leads to phenotypes associated with destabilized Sic1p, such as genome instability. Our results identify a novel factor that affects the stability of Sic1p, possibly contributing to mechanisms that trigger initiation of cell division.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ciclo Celular , Instabilidade Cromossômica , Proteínas Inibidoras de Quinase Dependente de Ciclina , Fenótipo , Monoéster Fosfórico Hidrolases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
Curr Genet ; 49(6): 384-92, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16552603

RESUMO

The Saccharomyces cerevisiae Hym1p, Mob2p, Tao3p, Cbk1p, Sog2p and Kic1p proteins are thought to function together in the RAM signaling network, which controls polarized growth, cell separation and cell integrity. Whether these proteins also function as a network to affect cell proliferation is not clear. Here we examined cells lacking or over-expressing RAM components, and evaluated the timing of initiation of DNA replication in each case. Our results suggest opposing roles of RAM proteins, where only Hym1p can promote the transition from the G1 to S phase of the cell cycle. We also uncovered additive growth defects in strains lacking several pair-wise combinations of RAM proteins, possibly arguing for multiple roles of RAM components in the overall control of cell proliferation. Finally, our findings suggest that Hym1p requires the Dcr2p phosphatase to promote the G1/S transition, but it does not require the G1 cyclin Cln3p or the RAS pathway. Taken together, our results point to a complex regulation of cell proliferation by RAM proteins, in a non-uniform manner that was not previously anticipated.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Ciclo Celular/fisiologia , Monoéster Fosfórico Hidrolases/fisiologia , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Fatores de Transcrição/fisiologia , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proliferação de Células , Ciclinas/genética , Ciclinas/fisiologia , Replicação do DNA , Período de Replicação do DNA , Fase G1 , Expressão Gênica/genética , Peptídeos e Proteínas de Sinalização Intracelular , Monoéster Fosfórico Hidrolases/genética , Proteínas Repressoras/genética , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Proteínas ras/genética , Proteínas ras/fisiologia
6.
Curr Genet ; 48(5): 300-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16240118

RESUMO

KEM1 is a Saccharomyces cerevisiae gene, conserved in all eukaryotes, whose deletion leads to pleiotropic phenotypes. For the most part, these phenotypes are thought to arise from Kem1p's role in RNA turnover, because Kem1p is a major 5'-3' cytoplasmic exonuclease. For example, the exonuclease-dependent role of Kem1p is involved in the exit from mitosis, by degrading the mRNA of the mitotic cyclin CLB2. Here, we describe the identification of a KEM1 truncation, KEM1(1-975), that accelerated the G1 to S transition and initiation of DNA replication when over-expressed. Interestingly, although this truncated Kem1p lacked exonuclease activity, it could efficiently complement another function affected by the loss of KEM1, microtubule-dependent nuclear migration. Taken together, the results we report here suggest that Kem1p might have a previously unrecognized role at the G1 to S transition, but not through its exonuclease activity. Our findings also support the notion that Kem1p is a multifunctional protein with distinct and separable roles.


Assuntos
Exorribonucleases/fisiologia , Fase G1/fisiologia , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/citologia , Proteínas de Ciclo Celular/metabolismo , Divisão do Núcleo Celular , Ciclina B/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Proteínas Mutantes/metabolismo , Estrutura Terciária de Proteína , Estabilidade de RNA , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Eukaryot Cell ; 3(6): 1627-38, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15590836

RESUMO

How cells determine when to initiate DNA replication is poorly understood. Here we report that in Saccharomyces cerevisiae overexpression of the dosage-dependent cell cycle regulator genes DCR2 (YLR361C) and GID8 (DCR1/YMR135C) accelerates initiation of DNA replication. Cells lacking both GID8 and DCR2 delay initiation of DNA replication. Genetic analysis suggests that Gid8p functions upstream of Dcr2p to promote cell cycle progression. DCR2 is predicted to encode a gene product with phosphoesterase activity. Consistent with these predictions, a DCR2 allele carrying a His338 point mutation, which in known protein phosphatases prevents catalysis but allows substrate binding, antagonized the function of the wild-type DCR2 allele. Finally, we report genetic interactions involving GID8, DCR2, and CLN3 (which encodes a G(1) cyclin) or SWI4 (which encodes a transcription factor of the G(1)/S transcription program). Our findings identify two gene products with a probable regulatory role in the timing of initiation of cell division.


Assuntos
Regulação Fúngica da Expressão Gênica , Monoéster Fosfórico Hidrolases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/fisiologia , Alelos , Ciclo Celular , DNA/metabolismo , Primers do DNA/química , Relação Dose-Resposta a Droga , Fase G1 , Genótipo , Glucose/metabolismo , Hidrólise , Immunoblotting , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Mitose , Mutação , Monoéster Fosfórico Hidrolases/química , Plasmídeos/metabolismo , Mutação Puntual , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Fatores de Tempo , Fatores de Transcrição/química , Transcrição Gênica
8.
Curr Genet ; 46(4): 183-92, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15365764

RESUMO

The Saccharomyces cerevisiae HYM1 gene is conserved among eukaryotes. The mammalian orthologue (called MO25) mediates signaling through the AMP-activated protein kinase and other related kinases, implicated in cell proliferation. In yeast, Hym1p plays a role in cellular morphogenesis and also promotes the daughter cell-specific localization of the Ace2p transcription factor. Here, we report that increased dosage of HYM1 apparently shortens the G1 phase of the cell cycle. In the absence of HYM1 or ACE2, mother and daughter cells divide with the same generation times. Genetic analysis of HYM1, ACE2 and CLN3 mutants suggests that these genes together contribute to the establishment of asynchronous mother-daughter cell divisions, but probably not in a linear pathway. Our overall data suggest that Hym1p has a regulatory role in cell cycle progression.


Assuntos
Ciclo Celular/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citologia , Meios de Cultura , Genes Fúngicos , Plasmídeos , Saccharomyces cerevisiae/genética
9.
Curr Genet ; 45(6): 350-9, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15022016

RESUMO

Mechanisms that coordinate cell growth with division are thought to determine the timing of initiation of cell division and to limit overall cell proliferation. To identify genes involved in this process in Saccharomyces cerevisiae, we describe a method that does not rely on cell size alterations or resistance to pheromone. Instead, our approach was based on the cell surface deposition of the Flo1p protein in cells having passed START. We found that over-expression of HXT11 (which encodes a plasma membrane transporter), PPE1 (coding for a protein methyl esterase), or SIK1 (which encodes a protein involved in rRNA processing) shortened the duration of the G1 phase of the cell cycle, prior to the initiation of DNA replication. In addition, we found that, although SIK1 was not part of a mitotic checkpoint, SIK1 over-expression caused spindle orientation defects and sensitized G2/M checkpoint mutant cells. Thus, unlike HXT11 and PPE1, SIK1 over-expression is also associated with mitotic functions. Overall, we used a novel enrichment approach and identified genes that were not previously associated with cell cycle progression. This approach can be extended to other organisms.


Assuntos
Proteínas de Ciclo Celular/genética , Clonagem Molecular/métodos , Mitose/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Genes Fúngicos , Biblioteca Genômica , Lectinas de Ligação a Manose , Mitose/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA