Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34475207

RESUMO

Cyclic dimeric guanosine monophosphate (c-di-GMP) serves as a second messenger that modulates bacterial cellular processes, including biofilm formation. While proteins containing both c-di-GMP synthesizing (GGDEF) and c-di-GMP hydrolyzing (EAL) domains are widely predicted in bacterial genomes, it is poorly understood how domains with opposing enzymatic activity are regulated within a single polypeptide. Herein, we report the characterization of a globin-coupled sensor protein (GCS) from Paenibacillus dendritiformis (DcpG) with bifunctional c-di-GMP enzymatic activity. DcpG contains a regulatory sensor globin domain linked to diguanylate cyclase (GGDEF) and phosphodiesterase (EAL) domains that are differentially regulated by gas binding to the heme; GGDEF domain activity is activated by the Fe(II)-NO state of the globin domain, while EAL domain activity is activated by the Fe(II)-O2 state. The in vitro activity of DcpG is mimicked in vivo by the biofilm formation of P. dendritiformis in response to gaseous environment, with nitric oxide conditions leading to the greatest amount of biofilm formation. The ability of DcpG to differentially control GGDEF and EAL domain activity in response to ligand binding is likely due to the unusual properties of the globin domain, including rapid ligand dissociation rates and high midpoint potentials. Using structural information from small-angle X-ray scattering and negative stain electron microscopy studies, we developed a structural model of DcpG, providing information about the regulatory mechanism. These studies provide information about full-length GCS protein architecture and insight into the mechanism by which a single regulatory domain can selectively control output domains with opposing enzymatic activities.


Assuntos
GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Paenibacillus/enzimologia , Fósforo-Oxigênio Liases/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Ligantes , Paenibacillus/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Domínios Proteicos/genética , Sistemas do Segundo Mensageiro/genética
2.
Biochemistry ; 60(49): 3801-3812, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34843212

RESUMO

Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is surprisingly able to differentially regulate its two cyclic dimeric guanosine monophosphate (c-di-GMP) metabolic domains in response to heme gaseous ligands. Mutagenesis of heme-edge residues was used to probe the heme pocket and resulted in decreased O2 dissociation kinetics, identifying roles for these residues in modulating DcpG gas sensing. In addition, the resonance Raman spectra of the DcpG wild type and heme-edge mutants revealed that the mutations alter the heme electrostatic environment, vinyl group conformations, and spin state population. Using small-angle X-ray scattering and negative stain electron microscopy, the heme-edge mutations were demonstrated to cause changes to the protein conformation, which resulted in altered signaling transduction and enzyme kinetics. These findings provide insights into molecular interactions that regulate DcpG gas sensing as well as mechanisms that have evolved to control multidomain bacterial signaling proteins.


Assuntos
Proteínas de Bactérias/química , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/química , Heme/química , Hemeproteínas/química , Paenibacillus/química , Diester Fosfórico Hidrolases/química , Fósforo-Oxigênio Liases/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , GMP Cíclico/química , GMP Cíclico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Heme/metabolismo , Hemeproteínas/genética , Hemeproteínas/metabolismo , Cinética , Modelos Moleculares , Oxigênio/química , Oxigênio/metabolismo , Paenibacillus/enzimologia , Paenibacillus/genética , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Eletricidade Estática , Relação Estrutura-Atividade , Especificidade por Substrato
3.
J Inorg Biochem ; 258: 112638, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38878680

RESUMO

Bacteria use the second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) to control biofilm formation and other key phenotypes in response to environmental signals. Changes in oxygen levels can alter c-di-GMP signaling through a family of proteins termed globin coupled sensors (GCS) that contain diguanylate cyclase domains. Previous studies have found that GCS diguanylate cyclase activity is controlled by ligand binding to the heme within the globin domain, with oxygen binding resulting in the greatest increase in catalytic activity. Herein, we present evidence that heme-edge residues control O2-dependent signaling in PccGCS, a GCS protein from Pectobacterium carotovorum, by modulating heme distortion. Using enzyme kinetics, resonance Raman spectroscopy, small angle X-ray scattering, and multi-wavelength analytical ultracentrifugation, we have developed an integrated model of the full-length PccGCS tetramer and have identified conformational changes associated with ligand binding, heme conformation, and cyclase activity. Taken together, these studies provide new insights into the mechanism by which O2 binding modulates activity of diguanylate cyclase-containing GCS proteins.


Assuntos
Proteínas de Bactérias , Heme , Pectobacterium carotovorum , Fósforo-Oxigênio Liases , Fósforo-Oxigênio Liases/metabolismo , Fósforo-Oxigênio Liases/química , Heme/química , Heme/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Pectobacterium carotovorum/enzimologia , Conformação Proteica , Oxigênio/química , Oxigênio/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/química , Proteínas de Escherichia coli
4.
Methods Mol Biol ; 2648: 87-98, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37039987

RESUMO

A spectrophotometric method to measure hydrolysis of the bacterial second messenger cyclic dimeric guanosine monophosphate is described for characterization of enzymes under aerobic and anaerobic conditions. The method allows for obtaining all necessary data to calculate KM and kcat from reactions within a single 96-well plate that can be measured using a standard plate reader. The spectrophotometric assay has been used to measure the rates and obtain Michaelis-Menten parameters for the c-di-GMP phosphodiesterase DcpG with the sensor domain in various ligation states.


Assuntos
GMP Cíclico , Oxigênio , Hidrólise , Sistemas do Segundo Mensageiro
5.
Chem Commun (Camb) ; 52(40): 6658-61, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27040724

RESUMO

The synthesis of 1,2-oxaborines is accomplished via the reaction of pentaarylboroles with N-methylmorpholine-N-oxide via a 1,1-insertion reaction. The aromatic nature of 1,2-oxaborines was evaluated by computing nuclear independent chemical shift (NICS) values. Collectively, the experimental and computational studies indicate the unsaturated central BOC4 ring has appreciable aromatic character.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA