Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Chem ; 44(13): 1263-1277, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36866644

RESUMO

Solvent-mediated interactions contribute to ligand binding affinities in computational drug design and provide a challenge for theoretical predictions. In this study, we analyze the solvation free energy of benzene derivatives in water to guide the development of predictive models for solvation free energies and solvent-mediated interactions. We use a spatially resolved analysis of local solvation free energy contributions and define solvation free energy arithmetic, which enable us to construct additive models to describe the solvation of complex compounds. The substituents analyzed in this study are carboxyl and nitro-groups due to their similar sterical requirements but distinct interactions with water. We find that nonadditive solvation free energy contributions are primarily attributed to electrostatics, which are qualitatively reproduced with computationally efficient continuum models. This suggests a promising route for the development of efficient and accurate models for the solvation of complex molecules with varying substitution patterns using solvation arithmetic.

2.
J Phys Chem B ; 123(28): 6014-6022, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31198036

RESUMO

In this molecular dynamics simulation study, we analyze the impact of increasing hydrostatic pressure on the solvation of protein surfaces. Apart from the increasing volume work required for the formation of the protein solute cavity at high hydrostatic pressures, no significant additional trend is observed for solvation free energy contributions due to the protein-water interactions analyzed here. The latter is the result of approximately canceling pressure-induced changes of enthalpic and entropic solvation free energy contributions, which can be traced back to changes in the hydration of hydrophilic and hydrophobic groups of the protein. The 3D-2PT analysis used here allows for the visualization of local solvation free energy contributions in three dimensions with high spatial resolution. Local solvation free energy contributions per water molecule at hydrophobic surfaces are small but mainly favorable for transfer processes from the gas phase. This does not change considerably with increasing pressure, while the number of hydrating water molecules increases due to increased packing of the hydration shell. The number of hydrating water molecules also increases for hydrophilic protein surfaces, but solvation contributions per water molecule become less favorable with pressure in this case. As a consequence, contributions to the total solvation free energy from interactions between water molecules and hydrophobic surfaces become increasingly relevant at high hydrostatic pressures. Our results provide novel insights into solvent-mediated contributions to the thermodynamic driving force of pressure denaturation of proteins.


Assuntos
Simulação de Dinâmica Molecular , Pressão , Proteínas/química , Água/química , Conformação Proteica , Termodinâmica
3.
J Phys Chem B ; 122(21): 5300-5307, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28899094

RESUMO

We analyze the role of solvation for enzymatic catalysis in two distinct, artificially designed Kemp Eliminases, KE07 and KE70, and mutated variants that were optimized by laboratory directed evolution. Using a spatially resolved analysis of hydration patterns, intermolecular vibrations, and local solvent entropies, we identify distinct classes of hydration water and follow their changes upon substrate binding and transition state formation for the designed KE07 and KE70 enzymes and their evolved variants. We observe that differences in hydration of the enzymatic systems are concentrated in the active site and undergo significant changes during substrate recruitment. For KE07, directed evolution reduces variations in the hydration of the polar catalytic center upon substrate binding, preserving strong protein-water interactions, while the evolved enzyme variant of KE70 features a more hydrophobic reaction center for which the expulsion of low-entropy water molecules upon substrate binding is substantially enhanced. While our analysis indicates a system-dependent role of solvation for the substrate binding process, we identify more subtle changes in solvation for the transition state formation, which are less affected by directed evolution.

4.
J Phys Chem B ; 121(31): 7431-7442, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28636363

RESUMO

In this molecular dynamics simulation study, we analyze intermolecular vibrations in the hydration shell of a solvated enyzme, the membrane type 1-matrix metalloproteinase, with high spatial resolution. Our approach allows us to characterize vibrational signatures of the local hydrogen bond network, the translational mobility of water molecules, as well as the molecular entropy, in specific local environments. Our study demonstrates the heterogeneity of water properties within the hydration shell of a complex biomolecule. We define a classification scheme based on the vibrational density of states that allows us to distinguish separate classes of hydration water species and facilitates the description of hydration water properties at distinct hydration sites. The results demonstrate that no single characteristic of the protein surface is sufficient to determine the properties of nearby water. The protein surface geometry, quantified here by the number of protein atoms in the vicinity of a hydration water molecule, as well as the chemical nature of a solvated protein functional group, influences dynamic and thermodynamic properties of solvating water molecules.

5.
J Chem Theory Comput ; 13(9): 4467-4481, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28783431

RESUMO

This study explores the thermodynamic and vibrational properties of water in the three-dimensional environment of solvated ions and small molecules using molecular simulations. The spectrum of intermolecular vibrations in liquid solvents provides detailed information on the shape of the local potential energy surface, which in turn determines local thermodynamic properties such as the entropy. Here, we extract this information using a spatially resolved extension of the two-phase thermodynamics method to estimate hydration water entropies based on the local vibrational density of states (3D-2PT). Combined with an analysis of solute-water and water-water interaction energies, this allows us to resolve local contributions to the solvation enthalpy, entropy, and free energy. We use this approach to study effects of ions on their surrounding water hydrogen bond network, its spectrum of intermolecular vibrations, and resulting thermodynamic properties. In the three-dimensional environment of polar and nonpolar functional groups of molecular solutes, we identify distinct hydration water species and classify them by their characteristic vibrational density of states and molecular entropies. In each case, we are able to assign variations in local hydration water entropies to specific changes in the spectrum of intermolecular vibrations. This provides an important link for the thermodynamic interpretation of vibrational spectra that are accessible to far-infrared absorption and Raman spectroscopy experiments. Our analysis provides unique microscopic details regarding the hydration of hydrophobic and hydrophilic functional groups, which enable us to identify interactions and molecular degrees of freedom that determine relevant contributions to the solvation entropy and consequently the free energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA