Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39063747

RESUMO

This paper reviews the latest trends and applications of silicone in ophthalmology, especially related to intraocular lenses (IOLs). Silicone, or siloxane elastomer, as a synthetic polymer, has excellent biocompatibility, high chemical inertness, and hydrophobicity, enabling wide biomedical applications. The physicochemical properties of silicone are reviewed. A review of methods for mechanical and in vivo characterization of IOLs is presented as a prospective research area, since there are only a few available technologies, even though these properties are vital to ensure medical safety and suitability for clinical use, especially if long-term function is considered. IOLs represent permanent implants to replace the natural lens or for correcting vision, with the first commercial foldable lens made of silicone. Biological aspects of posterior capsular opacification have been reviewed, including the effects of the implanted silicone IOL. However, certain issues with silicone IOLs are still challenging and some conditions can prevent its application in all patients. The latest trends in nanotechnology solutions have been reviewed. Surface modifications of silicone IOLs are an efficient approach to further improve biocompatibility or to enable drug-eluting function. Different surface modifications, including coatings, can provide long-term treatments for various medical conditions or medical diagnoses through the incorporation of sensory functions. It is essential that IOL optical characteristics remain unchanged in case of drug incorporation and the application of nanoparticles can enable it. However, clinical trials related to these advanced technologies are still missing, thus preventing their clinical applications at this moment.

2.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39065702

RESUMO

Recent advances in regenerative medicine provide encouraging strategies to produce artificial skin substitutes. Gelatin scaffolds are successfully used as wound-dressing materials due to their superior properties, such as biocompatibility and the ability to mimic the extracellular matrix of the surrounding environment. In this study, five gelatin combination solutions were prepared and successfully electrospun using an electrospinning technique. After careful screening, the optimal concentration of the most promising combination was selected for further investigation. The obtained scaffolds were crosslinked with 25% glutaraldehyde vapor and characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. The incorporation of antibiotic agents such as ciprofloxacin hydrochloride and gentamicin sulfate into gelatin membranes improved the already existing antibacterial properties of antibiotic-free gelatin scaffolds against Pseudomonas aeruginosa and Staphylococcus aureus. Also, the outcomes from the in vivo model study revealed that skin regeneration was significantly accelerated with gelatin/ciprofloxacin scaffold treatment. Moreover, the gelatin nanofibers were found to strongly promote the neoangiogenic process in the in vivo chick embryo chorioallantoic membrane assay. Finally, the combination of gelatin's extracellular matrix and antibacterial agents in the scaffold suggests its potential for effective wound-healing treatments, emphasizing the importance of gelatin scaffolds in tissue engineering.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38659385

RESUMO

Here, an artificial intelligence (AI)-based approach was employed to optimize the production of electrospun scaffolds for in vivo wound healing applications. By combining polycaprolactone (PCL) and poly(ethylene glycol) (PEG) in various concentration ratios, dissolved in chloroform (CHCl3) and dimethylformamide (DMF), 125 different polymer combinations were created. From these polymer combinations, electrospun nanofiber meshes were produced and characterized structurally and mechanically via microscopic techniques, including chemical composition and fiber diameter determination. Subsequently, these data were used to train a neural network, creating an AI model to predict the optimal scaffold production solution. Guided by the predictions and experimental outcomes of the AI model, the most promising scaffold for further in vitro analyses was identified. Moreover, we enriched this selected polymer combination by incorporating antibiotics, aiming to develop electrospun nanofiber scaffolds tailored for in vivo wound healing applications. Our study underscores three noteworthy conclusions: (i) the application of AI is pivotal in the fields of material and biomedical sciences, (ii) our methodology provides an effective blueprint for the initial screening of biomedical materials, and (iii) electrospun PCL/PEG antibiotic-bearing scaffolds exhibit outstanding results in promoting neoangiogenesis and facilitating in vivo wound treatment.

4.
Food Sci Nutr ; 11(10): 6393-6402, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37823160

RESUMO

Laetiporus sulphureus (Bull.) Murrill is a well-known edible mushroom consumed in nutrition as delicacy. It has been used in traditional medicine because of its beneficial effects on human wellness, such as antimicrobial, antioxidant, and anticancer potential. The present study determined the phenolic profile of Laetiporus sulphureus ethanolic extract (LSE) by high-performance liquid chromatographic method. Tolerance of two probiotic bacterial strains Lactiplantibacillus plantarum 229v, Bifidobacterium animalis subsp. lactis and probiotic yeast Saccharomyces boulardii on LSE was analyzed in terms of viability and biofilm formation. Effects of extract on colorectal (HCT-116) and cervical (HeLa) cancer cells viability was determined using MTT test in concentration range: 1-500 µg/mL after 24 and 72 h. Redox parameters (superoxide anion radicals, nitrites, and reduced glutathione) were evaluated using NBT, Griess, and GSH assays in the concentration range of 1-500 µg/mL after 24 and 72 h. Antimigratory activity was determined by wound healing method using selected concentrations of 10 and 50 µg/mL after 24 h. Untreated cells were considered as control. As control cell line, we used healthy fibroblasts (MRC-5). Our results demonstrated abundance of LSE in phenolics, with rosmarinic acid as the main component. LSE induced low tolerance of tested planktonic probiotic strains, with no affection on their ability to form biofilm. No significant cytotoxicity on tested cancer cells was observed, with prooxidative and antimigratory effects noticed. Extract exerted significant antimigratory activity on cancer cells without effect on planktonic and probiotic cultures in biofilm. These results indicate potential application of Laetiporus sulphureus ethanolic extract as natural protector of probiotics with prominent ability to suppress cancer cell motility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA