Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 75(6): 1243-1255.e7, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31353209

RESUMO

MicroRNAs (miRNAs) broadly regulate gene expression through association with Argonaute (Ago), which also protects miRNAs from degradation. However, miRNA stability is known to vary and is regulated by poorly understood mechanisms. A major emerging process, termed target-directed miRNA degradation (TDMD), employs specialized target RNAs to selectively bind to miRNAs and induce their decay. Here, we report structures of human Ago2 (hAgo2) bound to miRNAs and TDMD-inducing targets. miRNA and target form a bipartite duplex with an unpaired flexible linker. hAgo2 cannot physically accommodate the RNA, causing the duplex to bend at the linker and display the miRNA 3' end for enzymatic attack. Altering 3' end display by changing linker flexibility, changing 3' end complementarity, or mutationally inducing 3' end release impacts TDMD efficiency, leading to production of distinct 3'-miRNA isoforms in cells. Our results uncover the mechanism driving TDMD and reveal 3' end display as a key determinant regulating miRNA activity via 3' remodeling and/or degradation.


Assuntos
Proteínas Argonautas/metabolismo , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Estabilidade de RNA , Animais , Proteínas Argonautas/genética , Células HEK293 , Humanos , MicroRNAs/genética , Células Sf9 , Spodoptera
2.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34903581

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), continues to be a pressing health concern. In this study, we investigated the impact of SARS-CoV-2 infection on host microRNA (miRNA) populations in three human lung-derived cell lines, as well as in nasopharyngeal swabs from SARS-CoV-2-infected individuals. We did not detect any major and consistent differences in host miRNA levels after SARS-CoV-2 infection. However, we unexpectedly discovered a viral miRNA-like small RNA, named CoV2-miR-O7a (for SARS-CoV-2 miRNA-like ORF7a-derived small RNA). Its abundance ranges from low to moderate as compared to host miRNAs and it associates with Argonaute proteins-core components of the RNA interference pathway. We identify putative targets for CoV2-miR-O7a, including Basic Leucine Zipper ATF-Like Transcription Factor 2 (BATF2), which participates in interferon signaling. We demonstrate that CoV2-miR-O7a production relies on cellular machinery, yet is independent of Drosha protein, and is enhanced by the presence of a strong and evolutionarily conserved hairpin formed within the ORF7a sequence.


Assuntos
Regulação Viral da Expressão Gênica , Pequeno RNA não Traduzido/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/metabolismo , Proteínas Virais/genética , COVID-19/metabolismo , COVID-19/virologia , Interações Hospedeiro-Patógeno , Humanos , Pequeno RNA não Traduzido/genética , RNA Viral/genética , SARS-CoV-2/genética
3.
RNA ; 22(8): 1181-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27335146

RESUMO

Herpesvirus saimiri, an oncogenic herpesvirus, during latency produces seven small nuclear RNAs, called the Herpesvirus saimiri U RNAs (HSUR1-7). HSUR1 mediates degradation of the host microRNA, miR-27, via a process that requires imperfect base-pairing. The decreased levels of miR-27 lead to prolonged T-cell activation and likely contribute to oncogenesis. To gain insight into HSUR1-mediated degradation of miR-27, we probed the in vivo secondary structure of HSUR1 and coupled this with bioinformatic structural analyses. The results suggest that HSUR1 adopts a conformation different than previously believed and that the region complementary to miR-27 lacks stable structure. To determine whether HSUR1 structural flexibility is important for its ability to mediate miR-27 degradation, we performed structurally informative mutagenic analyses of HSUR1. HSUR1 mutants in which the miR-27 binding site sequence is preserved, but sequestered in predicted helices, lose their ability to decrease miR-27 levels. These results indicate that the HSUR1 miR27-binding region must be available in a conformationally flexible segment for noncoding RNA function.


Assuntos
Genes Virais , Herpesvirus Saimiriíneo 2/metabolismo , MicroRNAs/metabolismo , RNA Nuclear Pequeno/metabolismo , Animais , Callithrix , Herpesvirus Saimiriíneo 2/genética
4.
J Gen Virol ; 96(Pt 4): 874-886, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25502651

RESUMO

IFN-induced restriction factors can significantly affect the replicative capacity of retroviruses in mammals. TRIM5α (tripartite motif protein 5, isoform α) is a restriction factor that acts at early stages of the virus life cycle by intercepting and destabilizing incoming retroviral cores. Sensitivity to TRIM5α maps to the N-terminal domain of the retroviral capsid proteins. In several New World and Old World monkey species, independent events of retrotransposon-mediated insertion of the cyclophilin A (CypA)-coding sequence in the trim5 gene have given rise to TRIMCyp (also called TRIM5-CypA), a hybrid protein that is active against some lentiviruses in a species-specific fashion. In particular, TRIMCyp from the owl monkey (omkTRIMCyp) very efficiently inhibits human immunodeficiency virus type 1 (HIV-1). Previously, we showed that disrupting the integrity of microtubules (MTs) and of cytoplasmic dynein complexes partially rescued replication of retroviruses, including HIV-1, from restriction mediated by TRIM5α. Here, we showed that efficient restriction of HIV-1 by omkTRIMCyp was similarly dependent on the MT network and on dynein complexes, but in a context-dependent fashion. When omkTRIMCyp was expressed in human HeLa cells, restriction was partially counteracted by pharmacological agents targeting MTs or by small interfering RNA-mediated inhibition of dynein. The same drugs (nocodazole and paclitaxel) also rescued HIV-1 from restriction in cat CRFK cells, although to a lesser extent. Strikingly, neither nocodazole, paclitaxel nor depletion of the dynein heavy chain had a significant effect on the restriction of HIV-1 in an owl monkey cell line. These results suggested the existence of cell-specific functional interactions between MTs/dynein and TRIMCyp.


Assuntos
Proteínas de Transporte/farmacologia , Ciclofilina A/farmacologia , Dineínas/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Animais , Aotidae , Gatos , Linhagem Celular , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Citoplasma/virologia , Células HEK293 , Infecções por HIV/tratamento farmacológico , Células HeLa , Humanos
5.
J Virol ; 88(10): 5661-76, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24600008

RESUMO

UNLABELLED: The tripartite motif (TRIM) family of proteins includes the TRIM5α antiretroviral restriction factor. TRIM5α from many Old World and some New World monkeys can restrict the human immunodeficiency virus type 1 (HIV-1), while human TRIM5α restricts N-tropic murine leukemia virus (N-MLV). TRIM5α forms highly dynamic cytoplasmic bodies (CBs) that associate with and translocate on microtubules. However, the functional involvement of microtubules or other cytoskeleton-associated factors in the viral restriction process had not been shown. Here, we demonstrate the dependency of TRIM5α-mediated restriction on microtubule-mediated transport. Pharmacological disruption of the microtubule network using nocodazole or disabling it using paclitaxel (originally named taxol) decreased the restriction of N-MLV and HIV-1 by human or simian alleles of TRIM5α, respectively. In addition, pharmacological inhibition of dynein motor complexes using erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and small interfering RNA-mediated depletion of the dynein heavy chain (DHC) similarly decreased TRIM5α-mediated restriction. The loss in restriction resulting from either the disassembly of microtubules or the disruption of dynein motor activity was seen for both endogenous and overexpressed TRIM5α and was not due to differences in protein stability or cell viability. Both nocodazole treatment and DHC depletion interfered with the dynamics of TRIM5α CBs, increasing their size and altering their intracellular localization. In addition, nocodazole, paclitaxel, and DHC depletion were all found to increase the stability of HIV-1 cores in infected cells, providing an alternative explanation for the decreased restriction. In conclusion, association with microtubules and the translocation activity of dynein motor complexes are required to achieve efficient restriction by TRIM5α. IMPORTANCE: The primate innate cellular defenses against infection by retroviruses include a protein named TRIM5α, belonging to the family of restriction factors. TRIM5α is present in the cytoplasm, where it can intercept incoming retroviruses shortly after their entry. How TRIM5α manages to be present at the appropriate subcytoplasmic location to interact with its target is unknown. We hypothesized that TRIM5α, either as a soluble protein or a high-molecular-weight complex (the cytoplasmic body), is transported within the cytoplasm by a molecular motor called the dynein complex, which is known to interact with and move along microtubules. Our results show that destructuring microtubules or crippling their function decreased the capacity of human or simian TRIM5α to restrict their retroviral targets. Inhibiting dynein motor activity, or reducing the expression of a key component of this complex, similarly affected TRIM5α-mediated restriction. Thus, we have identified specific cytoskeleton structures involved in innate antiretroviral defenses.


Assuntos
Proteínas de Transporte/metabolismo , Dineínas/metabolismo , HIV-1/imunologia , Vírus da Leucemia Murina/imunologia , Microtúbulos/metabolismo , Animais , Fatores de Restrição Antivirais , Transporte Biológico , Linhagem Celular , Humanos , Macaca mulatta , Proteínas/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
6.
Retrovirology ; 10: 25, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23448277

RESUMO

BACKGROUND: HIV-1 is inhibited early after entry into cells expressing some simian orthologues of the tripartite motif protein family member TRIM5α. Mutants of the human orthologue (TRIM5αhu) can also provide protection against HIV-1. The host protein cyclophilin A (CypA) binds incoming HIV-1 capsid (CA) proteins and enhances early stages of HIV-1 replication by unknown mechanisms. On the other hand, the CA-CypA interaction is known to increase HIV-1 susceptibility to restriction by TRIM5α. Previously, the mutation V86M in the CypA-binding loop of HIV-1 CA was found to be selected upon serial passaging of HIV-1 in cells expressing Rhesus macaque TRIM5α (TRIM5αrh). The objectives of this study were (i) to analyze whether V86M CA allows HIV-1 to escape mutants of TRIM5αhu, and (ii) to characterize the role of CypA in the resistance to TRIM5α conferred by V86M. RESULTS: We find that in single-cycle HIV-1 vector transduction experiments, V86M confers partial resistance against R332G-R335G TRIM5αhu and other TRIM5αhu variable 1 region mutants previously isolated in mutagenic screens. However, V86M HIV-1 does not seem to be resistant to R332G-R335G TRIM5αhu in a spreading infection context. Strikingly, restriction of V86M HIV-1 vectors by TRIM5αhu mutants is mostly insensitive to the presence of CypA in infected cells. NMR experiments reveal that V86M alters CypA interactions with, and isomerisation of CA. On the other hand, V86M does not affect the CypA-mediated enhancement of HIV-1 replication in permissive human cells. Finally, qPCR experiments show that V86M increases HIV-1 transport to the nucleus of cells expressing restrictive TRIM5α. CONCLUSIONS: Our study shows that V86M de-couples the two functions associated with CA-CypA binding, i.e. the enhancement of restriction by TRIM5α and the enhancement of HIV-1 replication in permissive human cells. V86M enhances the early stages of HIV-1 replication in restrictive cells by improving nuclear import. In summary, our data suggest that HIV-1 escapes restriction by TRIM5α through the selective disruption of CypA-dependent, TRIM5α-mediated inhibition of nuclear import. However, V86M does not seem to relieve restriction of a spreading HIV-1 infection by TRIM5αhu mutants, underscoring context-specific restriction mechanisms.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas de Transporte/imunologia , Ciclofilina A/imunologia , Proteína do Núcleo p24 do HIV/metabolismo , HIV-1/imunologia , Mutação de Sentido Incorreto , Fatores de Restrição Antivirais , Proteínas de Transporte/metabolismo , Linhagem Celular , Ciclofilina A/metabolismo , Proteína do Núcleo p24 do HIV/genética , HIV-1/genética , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
7.
Artigo em Inglês | MEDLINE | ID: mdl-32019864

RESUMO

microRNAs (miRNAs) are crucial for posttranscriptional regulation of messenger RNAs. "Classical" miRNA targets predominantly interact with the miRNA seed sequence located near the miRNA 5' end. Interestingly, certain transcripts that exhibit extensive complementarity to the miRNAs 3' region, instead of being subjected to regulation, induce miRNA decay in a process termed target-directed miRNA degradation (TDMD). Here, we review recent advances in understanding the molecular mechanisms of TDMD. Specifically, we discuss how extensive miRNA complementarity to TDMD-inducing targets results in displacement of the miRNA 3' end from its protective pocket in the Argonaute protein. Unprotected miRNA 3' ends are then available for enzymatic attack by still-unidentified cellular enzymes. Identification of these cellular enzymes and discovery of additional TDMD-inducing transcripts are subjects for future research.

8.
Annu Rev Virol ; 6(1): 297-317, 2019 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-31039329

RESUMO

Like their host cells, many viruses express noncoding RNAs (ncRNAs). Despite the technical challenge of ascribing function to ncRNAs, diverse biological roles for virally expressed ncRNAs have been described, including regulation of viral replication, modulation of host gene expression, host immune evasion, cellular survival, and cellular transformation. Insights into conserved interactions between viral ncRNAs and host cell machinery frequently lead to novel findings concerning host cell biology. In this review, we discuss the functions and biogenesis of ncRNAs produced by animal viruses. Specifically, we describe noncanonical pathways of microRNA (miRNA) biogenesis and novel mechanisms used by viruses to manipulate miRNA and messenger RNA stability. We also highlight recent advances in understanding the function of viral long ncRNAs and circular RNAs.


Assuntos
Regulação Viral da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , RNA não Traduzido , RNA Viral/genética , Vírus/genética , Animais , MicroRNAs/genética , RNA Circular/genética , Replicação Viral
9.
Viruses ; 6(11): 4195-211, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25375884

RESUMO

Retroviral capsid (CA) cores undergo uncoating during their retrograde transport (toward the nucleus), and/or after reaching the nuclear membrane. However, whether HIV-1 CA core uncoating is dependent upon its transport is not understood. There is some evidence that HIV-1 cores retrograde transport involves cytoplasmic dynein complexes translocating on microtubules. Here we investigate the role of dynein-dependent transport in HIV-1 uncoating. To interfere with dynein function, we depleted dynein heavy chain (DHC) using RNA interference, and we over-expressed p50/dynamitin. In immunofluorescence microscopy experiments, DHC depletion caused an accumulation of CA foci in HIV-1 infected cells. Using a biochemical assay to monitor HIV-1 CA core disassembly in infected cells, we observed an increase in amounts of intact (pelletable) CA cores upon DHC depletion or p50 over-expression. Results from these two complementary assays suggest that inhibiting dynein-mediated transport interferes with HIV-1 uncoating in infected cells, indicating the existence of a functional link between HIV-1 transport and uncoating.


Assuntos
Dineínas do Citoplasma/metabolismo , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Desenvelopamento do Vírus , Transporte Biológico , Capsídeo/metabolismo , Dineínas do Citoplasma/antagonistas & inibidores , Técnicas de Silenciamento de Genes , Humanos
10.
Virus Res ; 173(2): 306-314, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23357295

RESUMO

Human-derived antiretroviral transgenes are of great biomedical interest and are actively pursued. HIV-1 is efficiently inhibited at post-entry, pre-integration replication stages by point mutations in the variable region 1 (v1) of the human restriction factor TRIM5α. Here we use a mutated megaprimer approach to create a mutant library of TRIM5αHu v1 and to isolate a mutation at Gly330 (G330E) that inhibits transduction of an HIV-1 vector as efficiently as the previously described mutants at positions Arg332 and Arg335. As was the case for these other mutations, modification of the local v1 charge toward increased acidity was key to inhibiting HIV-1. G330E TRIM5αHu also disrupted replication-competent HIV-1 propagation in a human T cell line. Interestingly, G330E did not enhance restriction of HIV-1 when combined with mutations at Arg332 or Arg335. Accordingly, the triple mutant G330E-R332G-R335G bound purified recombinant HIV-1 capsid tubes less efficiently than the double mutant R332G-R335G did. In a structural model of the TRIM5αHu PRYSPRY domain, the addition of G330E to the double mutant R332G-R335G caused extensive changes to the capsid-binding surface, which may explain why the triple mutant was no more restrictive than the double mutant. The HIV-1 inhibitory potential of Gly330 mutants was not predicted by examination of natural TRIM5α orthologs that are known to strongly inhibit HIV-1. This work underlines the potential of random mutagenesis to isolate novel variants of human proteins with antiviral properties.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , HIV-1/imunologia , Fatores de Restrição Antivirais , Sítios de Ligação , Linhagem Celular , Testes Genéticos , Humanos , Modelos Moleculares , Mutagênese , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Ligação Proteica , Conformação Proteica , Linfócitos T/virologia , Transdução Genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA