Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894955

RESUMO

In this report, we discuss the effects of undescribed flavone derivatives, HZ4 and SP9, newly isolated from the aerial parts of Hottonia palustris L. and Scleranthus perennis L. on membranes. Interaction of flavonoids with lipid bilayers is important for medicinal applications. The experiments were performed with FTIR and NMR techniques on liposomes prepared from DPPC (dipalmitoylphosphatidylcholine) and EYPC (egg yolk phosphatidylcholine). The data showed that the examined polyphenols incorporate into the polar head group region of DPPC phospholipids at both 25 °C and 45 °C. At the lower temperature, a slight effect in the spectral region of the ester carbonyl group is observed. In contrast, at 45 °C, both compounds bring about the changes in the spectral regions attributed to antisymmetric and symmetric stretching vibrations of CH2 and CH3 moieties. Similarly, as in DPPC lipids, the tested compounds interact with the fingerprint region of the polar head groups of the EYPC lipids and cause its reorganization. The outcomes obtained by NMR analyses confirmed the localization of both flavonoids in the polar heads zone. Unraveled effects of HZ4 and SP9 in respect to lipid bilayers can partly determine their biological activities and are crucial for their usability in medicine as disease-preventing phytochemicals.


Assuntos
Flavonoides , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Lipossomos/química , Espectroscopia de Ressonância Magnética , 1,2-Dipalmitoilfosfatidilcolina/química
2.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068110

RESUMO

The aim of the study was to investigate the anticancer potential of LY294002 (PI3K inhibitor) and temozolomide using glioblastoma multiforme (T98G) and anaplastic astrocytoma (MOGGCCM) cells. Apoptosis, autophagy, necrosis, and granules in the cytoplasm were identified microscopically (fluorescence and electron microscopes). The mitochondrial membrane potential was studied by flow cytometry. The activity of caspases 3, 8, and 9 and Akt was evaluated fluorometrically, while the expression of Beclin 1, PI3K, Akt, mTOR, caspase 12, and Hsp27 was determined by immunoblotting. SiRNA was used to block Hsp27 and PI3K expression. Cell migration and localization of Hsp27 were tested with the wound healing assay and immunocytochemistry, respectively. LY294002 effectively diminished the migratory potential and increased programmed death of T98G and MOGGCCM. Autophagy was dominant in MOGGCCM, while apoptosis was dominant in T98G. LY294002 with temozolomide did not potentiate cell death but redirected autophagy toward apoptosis, which was correlated with ER stress. A similar effect was observed after blocking PI3K expression with siRNA. Transfection with Hsp27 siRNA significantly increased apoptosis related to ER stress. Our results indicate that inhibition of the PI3K/Akt/mTOR pathway sensitizes glioma cells to apoptosis upon temozolomide treatment, which was correlated with ER stress. Hsp27 increases the resistance of glioma cells to cell death upon temozolomide treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Cromonas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Temozolomida/farmacologia , Antineoplásicos Alquilantes/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Inibidores Enzimáticos/farmacologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Potencial da Membrana Mitocondrial , Necrose , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Células Tumorais Cultivadas
3.
Int J Mol Sci ; 21(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168818

RESUMO

Anionic antimicrobial peptides constitute an integral component of animal innate immunity, however the mechanisms of their antifungal activity are still poorly understood. The action of a unique Galleria mellonella anionic peptide 2 (AP2) against fungal pathogen Candida albicans was examined using different microscopic techniques and Fourier transform infrared (FTIR) spectroscopy. Although the exposure to AP2 decreased the survival rate of C. albicans cells, the viability of protoplasts was not affected, suggesting an important role of the fungal cell wall in the peptide action. Atomic force microscopy showed that the AP2-treated cells became decorated with numerous small clods and exhibited increased adhesion forces. Intensified lomasome formation, vacuolization, and partial distortion of the cell wall was also observed. FTIR spectroscopy suggested AP2 interactions with the cell surface proteins, leading to destabilization of protein secondary structures. Regardless of the anionic character of the whole AP2 molecule, bioinformatics analyses revealed the presence of amphipathic α-helices with exposed positively charged lysine residues. High content of the α-helical structure was confirmed after deconvolution of the IR absorption spectrum and during circular dichroism measurements. Our results indicated that the antimicrobial properties of G. mellonella AP2 rely on the same general characteristics found in cationic defense peptides.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Mariposas/química , Peptídeos/farmacologia , Animais , Proteínas de Bactérias/metabolismo , Candida albicans/ultraestrutura , Parede Celular/efeitos dos fármacos , Proteínas de Membrana/química , Viabilidade Microbiana/efeitos dos fármacos , Microscopia de Força Atômica , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192097

RESUMO

Novel sustainable processes involving oxidative enzymatic catalysts are considered as an alternative for classical organic chemistry. The unique physicochemical and bioactive properties of novel bio-products can be obtained using fungal laccase as catalyst. Among them are textile biodyes synthesised during oxidation of substrates belonging to the amine and methoxy organic derivatives. The process of synthesis occurs in mild conditions of pH, temperature, and pressure, and without using harmful oxidants. The effect of fungal laccase activity on the substrates mixture transformation efficiency was analysed in terms of antimicrobial dye synthesis on a large scale. Three new phenazine dyes, obtained in the presence of laccase from Cerrena unicolor, were studied for their structure and properties. The phenazine core structure of the products was a result of tri-molecular transformation of aminomethoxybenzoic acid and aminonaphthalene sulfonic acid isomers. One of the compounds from the synthesised dye, namely 10-((2-carboxy-6-methoxyphenyl)amino)-11-methoxybenzo[a]phenazine-8-carboxylic acid, was able to inhibit the growth of Staphylococcus aureus. The high concentration of substrates (5 g/L) was efficiently transformed during 72 h in the mild conditions of pH 4 with the use of laccase with an activity of 200 U per g of the substrates mixture. The new bioactive dye exhibited excellent dyeing properties with concomitant antibacterial and antioxidative activity. The proposed enzyme-mediated synthesis represents an alternative eco-friendly route for the synthesis of novel antimicrobial compounds with high importance for the medical textile industry.


Assuntos
Corantes/química , Corantes/farmacologia , Fungos/enzimologia , Lacase/metabolismo , Têxteis , Antioxidantes/química , Antioxidantes/farmacologia , Biotransformação , Cromatografia Líquida de Alta Pressão , Eletroquímica , Concentração de Íons de Hidrogênio , Cinética , Estrutura Molecular , Oxirredução , Relação Estrutura-Atividade
5.
Amino Acids ; 51(2): 175-191, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30167962

RESUMO

Cecropins constitute an important family of insect antimicrobial peptides involved in humoral innate immune response. In comparison with the highly basic cecropins A and B, cecropins D are less cationic and more hydrophobic. Interestingly, cecropins D were described only in lepidopteran insects, e.g., the greater wax moth Galleria mellonella. In the present study, interactions of neutral cecropin D (pI 6.47) purified from hemolymph of G. mellonella with living Escherichia coli cells were investigated. Fluorescence lifetime imaging microscopy using fluorescein isothiocyanate-labeled cecropin D revealed very fast binding of the peptide to E. coli cells. Fourier transform infrared spectroscopy analyses showed that G. mellonella cecropin D interacted especially with E. coli LPS and probably other lipid components of the bacterial cell envelope and exhibited an ordering effect with regard to lipid chains. This effect is consistent with the peptide binding mechanism based upon its incorporation into the lipid phase of the cell membrane. The interaction resulted in permeabilization of the bacterial cell membrane. Upon cecropin D binding, the cells lost characteristic surface topography, which was accompanied by altered nanomechanical properties, as revealed by atomic force microscopy. The interaction of the peptide with the bacterial cells also led to intracellular damage, i.e., loss of the cell envelope multilayer structure, formation of membrane vesicles, and enlargement of periplasmic space, which eventually caused death of the bacteria. In summary, it can be concluded that amphipathic character of α-helices, exposure of small positively charged patches on their polar surfaces and hydrophobic interactions are important physicochemical characteristics related to effective binding to E. coli cells and antibacterial activity of neutral G. mellonella cecropin D.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Cecropinas/química , Cecropinas/farmacologia , Escherichia coli/efeitos dos fármacos , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Mariposas/química , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Aderência Bacteriana/fisiologia , Cecropinas/isolamento & purificação , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Hemolinfa/química , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/metabolismo , Lipopolissacarídeos/metabolismo , Fluidez de Membrana/fisiologia , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Periplasma/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Biochim Biophys Acta Biomembr ; 1860(2): 292-299, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29106971

RESUMO

Lensoside Aß, representing the flavonol glycosides, is a compound isolated from the aerial parts of edible lentil (Lens culinaris) cultivar Tina. This substance arouses interest because so far there is very little data about secondary metabolites isolated from the leaves and stems of this plant. Additionally, bioactive potential of flavonoids is directly coupled with the membranes as a primary target of their physiological and pharmacological activity. The aim of this study was to investigate the effect of lensoside Aß on lipid membranes. Interaction of examined compound with liposomes formed with dipalmitoylphosphatidylcholine (DPPC) was investigated with application of FTIR spectroscopy and 1H NMR technique. Molecular localization and orientation of lensoside Aß in a single lipid bilayer system represented by giant unilamellar vesicles, was also investigated with application of confocal fluorescence lifetime imaging microscopy (FLIM). FTIR analysis revealed that the tested compound incorporates into DPPC membranes via hydrogen bonding to lipid polar head groups in the PO2 group region and the COPOC segment. Furthermore 1H NMR analysis showed ordering effect in both the hydrophobic alkyl chains region and the polar heads of phospholipids. FLIM investigation has revealed roughly parallel orientation of its molecules in the membranes. This suggests that one of the possible physiological functions of this flavonol could be screening a cell against short-wavelength radiation.


Assuntos
Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Quercetina/metabolismo , Lipossomas Unilamelares/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Ligação de Hidrogênio , Bicamadas Lipídicas/química , Lipossomos/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Quercetina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Lipossomas Unilamelares/química
7.
Biochim Biophys Acta ; 1838(8): 2127-38, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24813834

RESUMO

With application of EPR and (1)H NMR techniques genistein interaction with liposomes formed with egg yolk lecithin and with erythrocyte membranes was assessed. The present study addressed the problem of genistein localization and its effects on lipid membrane fluidity and protein conformation. The range of microscopic techniques was employed to study genistein effects on HeLa cells and human erythrocytes. Moreover, DPPH bioassay, superoxide anion radical test and enzymatic measurements were performed in HeLa cells subjected to genistein. The gathered results from both EPR and NMR techniques indicated strong ordering effect of genistein on the motional freedom of lipids in the head group region and the adjacent hydrophobic zone in liposomal as well as in red blood cell membranes. EPR study of human ghost showed also the changes in the erythrocyte membrane protein conformation. The membrane effects of genistein were correlated with the changes in internal membranes arrangement of HeLa cells as it was noticed using transmission electron microscopic and fluorescent techniques. Scanning electron and light microscopy methods showed that one of the aftermaths of genistein incorporation into membranes was creation of echinocytic form of the red blood cells with reduced diameter. Genistein improved redox status of HeLa cells treated with H2O2 by lowering radicals' level. In conclusion, the capacity of genistein to incorporate, to affect membrane organization and to change its biophysical properties is correlated with the changes inside the cells.


Assuntos
Anticarcinógenos/metabolismo , Membrana Eritrocítica/metabolismo , Radicais Livres/metabolismo , Genisteína/metabolismo , Bicamadas Lipídicas/metabolismo , Lipossomos , Antioxidantes/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Genisteína/química , Células HeLa , Humanos , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência
8.
Biochim Biophys Acta ; 1838(1 Pt B): 254-65, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24001508

RESUMO

Quercetin (3,3',4',5,7-pentahydroxyflavone) is claimed to exert many beneficial health effects. With application of (1)H NMR (nuclear magnetic resonance) and FTIR (Fourier-transform infrared) techniques, quercetin interaction with liposomes formed with dipalmitoylphosphatidylcholine (DPPC) was analyzed. Patch-clamp technique was employed to study quercetin effects at single channel level of vacuolar membranes in the liverwort Conocephalum conicum. Light and electron microscopy were applied to study quercetin effects on human negroid cervix carcinoma cells (HeLa). Enzymatic measurements along with DPPH (1,1-diphenyl-2-picrylhydrazyl) bioassay were performed to investigate the influence of quercetin on antioxidant enzymes and reactive oxygen species (ROS) production. The inclusion of quercetin to the membrane exerted pronounced ordering effect on the motional freedom of lipids in the head group region as manifested by broadening of the (1)H NMR spectral line representing the choline groups. FTIR analysis revealed quercetin incorporation into DPPC liposomes via hydrogen bonding between its own hydroxyl groups and lipid polar head groups in the C-O-P-O-C segment. Both, FTIR and NMR techniques indicated also quercetin spectral effects in the region corresponding to alkyl chains. Patch-clamp experiments showed that quercetin stabilizes tonoplast and promotes a close state of SV channels. Microscopic observations of HeLa cells revealed characteristic changes in ultrastructure and morphology of the examined cells in comparison to control cells. Pretreatment of HeLa cells with quercetin alleviated H2O2-induced cell injury by improving redox balance as indicated by the increase in glutathione content and SOD (superoxide dismutase) levels as well as by the decrease in ROS level. \In conclusion, the incorporation, distribution and the changes of biophysical properties of the membranes are very important for the effectiveness of phenolic compounds as antioxidant and anticancer factors.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Membranas Intracelulares/química , Lipossomos/química , Quercetina/química , Vacúolos/química , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Hepatófitas/química , Humanos , Ligação de Hidrogênio , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Espectroscopia de Ressonância Magnética , Técnicas de Patch-Clamp , Picratos/antagonistas & inibidores , Picratos/metabolismo , Quercetina/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Can J Microbiol ; 61(8): 545-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26114405

RESUMO

Heavy metals are difficult to remediate and traditional remedial processes are expensive, so bioremediation technology using bacteria, fungi, or plants is of interest. Many studies have demonstrated that basidiomycetes fungi are able to growth under heavy metals stress. In this study the distribution of cadmium (Cd) in Abortiporus biennis cells was studied. Cd accumulated especially within cytoplasm and its presence caused changes in the cytoplasm appearance, which became denser in comparison to the cytoplasm of control cells. Vacuolization of cytoplasm and periplasmic region in A. biennis cells was also observed. The growth rate of A. biennis was inhibited up to 75% during the growth on medium amended with 1 mmol/L cadmium oxide. The presence of Cd in growing media inhibited oxalic acid secretion by A. biennis, but oxalate concentration increased together with elevated Cd concentration in growing medium. The influence of initial pH of growing media on the accumulation of Cd by A. biennis was also observed. The highest accumulation of Cd in mycelium was detected during A. biennis growth on media with a pH of 6. Studies addressing metals uptake by fungi and metal distribution in fungal cells may allow these organisms to be applied in bioremediation processes more effectively or to be used as bioindicators of contaminated environmental pollutions.


Assuntos
Basidiomycota/metabolismo , Cádmio/metabolismo , Basidiomycota/crescimento & desenvolvimento , Biodegradação Ambiental , Meios de Cultura , Citoplasma/metabolismo , Micélio/metabolismo
10.
Biochim Biophys Acta ; 1828(2): 518-27, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23088916

RESUMO

Apigenin (5,7,4'-trihydroxyflavone) is a cancer chemopreventive agent and a member of the family of plant flavonoids. Apigenin interaction with liposomes formed with dipalmitoylphosphatidylcholine (DPPC) was investigated by means of FTIR spectroscopy, (1)H NMR and EPR techniques. Fluorescent microscopy and electron microscopy were applied to study the apigenin effects on colon myofibroblasts and human skin fibroblasts. The strong rigidifying effect of apigenin with respect to polar head groups was concluded on the basis of the action of the flavone on partition coefficient of Tempo spin label between the water and lipid phases. The ordering effect was also found in hydrophobic region at the depth monitored by 5-SASL and 16-SASL spin labels. The inclusion of apigenin to the membrane restricted the motional freedom of polar head groups lowering penetration of Pr(3+) ions to the membranes. The (1)H NMR technique supported also the restriction of motional freedom of the membrane in the hydrophobic region, especially in the zone of CH(2) groups of alkyl chains. FTIR analysis showed that apigenin incorporates into DPPC liposomes via hydrogen bonding between its own hydroxyl groups and lipid polar head groups in the C-O-P-O-C segment. It is also very likely that hydroxyl groups of apigenin link with polar groups of DPPC by water bridges. Electron and fluorescence microscopic observations revealed changes in the internal membrane organization of the examined cells. In conclusion, the changes of the structural and dynamic properties of membranes can be crucial for processes involving tumor suppression signal transduction pathways and cell cycle regulation.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Apigenina/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Flavonas/química , Lipossomos/química , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Apigenina/farmacologia , Colo/metabolismo , Fibroblastos/metabolismo , Humanos , Íons , Microscopia de Fluorescência/métodos , Modelos Químicos , Transdução de Sinais , Pele/metabolismo , Marcadores de Spin , Água/química
11.
Sci Rep ; 14(1): 8025, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580807

RESUMO

The modification of the surgical polypropylene mesh and the polytetrafluoroethylene vascular prosthesis with cecropin A (small peptide) and puromycin (aminonucleoside) yielded very stable preparations of modified biomaterials. The main emphasis was placed on analyses of their antimicrobial activity and potential immunomodulatory and non-cytotoxic properties towards the CCD841 CoTr model cell line. Cecropin A did not significantly affect the viability or proliferation of the CCD 841 CoTr cells, regardless of its soluble or immobilized form. In contrast, puromycin did not induce a significant decrease in the cell viability or proliferation in the immobilized form but significantly decreased cell viability and proliferation when administered in the soluble form. The covalent immobilization of these two molecules on the surface of biomaterials resulted in stable preparations that were able to inhibit the multiplication of Staphylococcus aureus and S. epidermidis strains. It was also found that the preparations induced the production of cytokines involved in antibacterial protection mechanisms and stimulated the immune response. The key regulator of this activity may be related to TLR4, a receptor recognizing bacterial LPS. In the present study, these factors were produced not only in the conditions of LPS stimulation but also in the absence of LPS, which indicates that cecropin A- and puromycin-modified biomaterials may upregulate pathways leading to humoral antibacterial immune response.


Assuntos
Anti-Infecciosos , Materiais Biocompatíveis , Materiais Biocompatíveis/farmacologia , Lipopolissacarídeos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros/farmacologia , Staphylococcus epidermidis , Puromicina
12.
Biochim Biophys Acta ; 1818(7): 1785-93, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22503863

RESUMO

The effect of genistein on the liposomes formed with dipalmitoylphosphatidylcholine was studied with the application of Fourier-transform infrared spectroscopy, nuclear magnetic resonance (1H NMR) and electron paramagnetic resonance techniques. Membranous structures organization of human skin fibroblasts and colon myofibroblasts was also examined using fluorescence and electron microscopy. The strongest rigidifying effect of genistein with respect to polar head groups was concluded on the basis of the effect of the flavonoid on the shape of NMR lines attributed to -N+(CH3)3 groups. The rigidifying effect of genistein with respect to the hydrophobic core of lipid membranes was also concluded from the genistein-dependent broadening of the NMR lines assigned to -CH2 groups and terminal -CH3 groups of alkyl chains. EPR data supported ordering effect of genistein of the hydrophobic core in the liquid-crystalline phase (Lalpha). The analysis of the FTIR spectra of the two-component liposomes showed that genistein incorporates into DPPC membranes via hydrogen bonding between the lipid polar head groups in the C-O-P-O-C segment and its hydroxyl groups. Both fluorescence microscopy and ultrastructural observation revealed changes in membranous structures organization as aftermath of genistein treatment. In conclusion, genistein localized within membranes changes the properties of membrane that can be followed by the changes inside cells being crucial for pharmacological activity of genistein used in cancer or other disease treatment.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Genisteína/química , Bicamadas Lipídicas/química , Lipossomos/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colo/citologia , Espectroscopia de Ressonância de Spin Eletrônica , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/ultraestrutura , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/ultraestrutura , Genisteína/metabolismo , Genisteína/farmacologia , Humanos , Ligação de Hidrogênio , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Modelos Moleculares , Estrutura Molecular , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/ultraestrutura , Pele/citologia , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Biochim Biophys Acta Biomembr ; 1865(4): 184142, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36848998

RESUMO

The aim of this study was to characterize, for the first time, the interactions, location, and influence of flavonoids isolated from aerial parts of Scleranthus perennis (Caryophyllaceae) and Hottonia palustris (Primulaceae) on the properties of model lipid membranes prepared from dipalmitoylphosphatidylcholine (DPPC) and egg yolk phosphatidylcholine (EYPC). The tested compounds incorporated into liposomes into the region of the polar heads or at the water/membrane interface of DPPC phospholipids. Spectral effects accompanying the presence of polyphenols revealed their effect on ester carbonyl groups apart from SP8. All polyphenols brought about reorganization of the polar zone of liposomes as it was observed by FTIR technique. Additionally, fluidization effect was noted in the region of symmetric and antisymmetric stretching vibrations of the CH2 and CH3 groups with exception to HZ2 and HZ3. Similarly, in EYPC liposomes, they interacted mainly with the regions of the choline heads of the lipids and had various effects on the carbonyl ester groups with exception to SP8. The region of polar head groups is restructured due to the presence of the additives in liposomes. The outcomes obtained using the NMR technique confirmed the locations of all of the tested compounds in the polar zone and indicated a flavonoid-dependent modifying effect towards lipid membranes. HZ1 and SP8 raised motional freedom in this region whereas opposite effect was revealed for HZ2 and HZ3. In the hydrophobic region restricted mobility was noted. In this report we discuss the mechanism of previously undescribed flavonoids in terms of their actions on membranes.


Assuntos
Caryophyllaceae , Primulaceae , Lipossomos/química , Flavonoides , Fosfolipídeos , Componentes Aéreos da Planta
14.
J Phys Chem B ; 127(16): 3632-3640, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37071547

RESUMO

Amphotericin B (AmB) is a life-saving and widely used antifungal antibiotic, but its therapeutic applicability is limited due to severe side effects. Here, we report that the formulation of the drug based on a complex with albumin (BSA) is highly effective against Candida albicans at relatively low concentrations, which implies lower toxicity to patients. This was also concluded based on the comparison with antifungal activities of other popular commercial formulations of the drug, such as Fungizone and AmBisome. Several molecular spectroscopy and imaging techniques, e.g., fluorescence lifetime imaging microscopy (FLIM), were applied to understand the phenomenon of enhanced antifungal activity of the AmB-BSA complex. The results show that the drug molecules bound to the protein remain mostly monomeric and are most likely bound in the pocket responsible for the capture of small molecules by this transport protein. The results of molecular imaging of single complex particles indicate that in most cases, the antibiotic-protein stoichiometry is 1:1. All of the analyses of the AmB-BSA system exclude the presence of the antibiotic aggregates potentially toxic to patients. Cell imaging shows that BSA-bound AmB molecules can readily bind to fungal cell membranes, unlike drug molecules present in the aqueous phase, which are effectively retained by the cell wall barrier. The advantages and prospects of pharmacological use of AmB complexed with proteins are discussed.


Assuntos
Anfotericina B , Antifúngicos , Antifúngicos/farmacologia , Antifúngicos/química , Anfotericina B/farmacologia , Anfotericina B/química , Candida albicans , Albuminas , Antibacterianos/farmacologia
15.
Int J Mol Sci ; 13(12): 17048-64, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23235329

RESUMO

The gram-negative bacterium Legionella dumoffii is, beside Legionella pneumophila, an etiological agent of Legionnaires' disease, an atypical form of pneumonia. The aim of this study was to determine the antimicrobial activity of Galleria mellonella defense polypeptides against L. dumoffii. The extract of immune hemolymph, containing a mixture of defense peptides and proteins, exhibited a dose-dependent bactericidal effect on L. dumoffii. The bacterium appeared sensitive to a main component of the hemolymph extract, apolipophorin III, as well as to a defense peptide, Galleria defensin, used at the concentrations 0.4 mg/mL and 40 µg/mL, respectively. L. dumoffii cells cultured in the presence of choline were more susceptible to both defense factors analyzed. A transmission electron microscopy study of bacterial cells demonstrated that Galleria defensin and apolipophorin III induced irreversible cell wall damage and strong intracellular alterations, i.e., increased vacuolization, cytoplasm condensation and the appearance of electron-white spaces in electron micrographs. Our findings suggest that insects, such as G. mellonella, with their great diversity of antimicrobial factors, can serve as a rich source of compounds for the testing of Legionella susceptibility to defense-related peptides and proteins.


Assuntos
Anti-Infecciosos , Apolipoproteínas , Defensinas , Proteínas de Insetos , Legionella/crescimento & desenvolvimento , Mariposas/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Apolipoproteínas/química , Apolipoproteínas/isolamento & purificação , Apolipoproteínas/farmacologia , Defensinas/química , Defensinas/isolamento & purificação , Defensinas/farmacologia , Hemolinfa , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/farmacologia
16.
Nutrients ; 14(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36079762

RESUMO

The food colorant E171 (TiO2) containing nano fractions can cause potential health problems. In the presented work, we used a "gastrointestinal tract" model (oral→large intestine) to "digest" a fruit smoothie in the presence of TiO2 nanoparticles and the Lactiplantibacillus plantarum B strain. The TiO2 migration was measured using the microfiltration membrane (0.2 µm; model of "TiO2 bioacessability"). We observed that the addition of the smoothie reduced the Ti content in the microfiltrate (reduced "bioacessability") at the "mouth", "stomach" and "large intestine" stages, probably due to the entrapment of Ti by the smoothie components. A significant decrease in Ti "bioaccessibility" at the "gastric" stage may have resulted from the agglomeration of nanoparticles at a low pH. Additionally, the presence of bacterial cells reduced the "bioaccessibility" at the "large intestine" stage. Microscopic imaging (SEM) revealed clear morphological changes to the bacterial cells in the presence of TiO2 (altered topography, shrunk-deformed cells with collapsed walls due to leakage of the content, indentations). Additionally, TiO2 significantly reduced the growth of the tested bacteria. It can be stated that the interactions (most probably entrapment) of TiO2 in the food matrix can occur during the digestion. This can influence the physicochemical properties, bioavailability and in vivo effect of TiO2. Research aimed at understanding the interactions between TiO2 and food components is in progress.


Assuntos
Nanopartículas , Titânio , Disponibilidade Biológica , Trato Gastrointestinal/metabolismo , Nanopartículas/química , Titânio/química , Titânio/metabolismo
17.
Foods ; 10(5)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923019

RESUMO

Food-grade titanium dioxide (TiO2) containing a nanoparticle fraction (TiO2 NPs -nanoparticles) is widely used as a food additive (E171 in the EU). In recent years, it has increasingly been raising controversies as to the presence or absence of its harmful effects on the gastrointestinal microbiota. The complexity and variability of microbiota species present in the human gastrointestinal tract impede the assessment of the impact of food additives on this ecosystem. As unicellular organisms, bacteria are a very convenient research model for investigation of the toxicity of nanoparticles. We examined the effect of TiO2 (three types of food-grade E171 and one TiO2 NPs, 21 nm) on the growth of 17 strains of lactic acid bacteria colonizing the human digestive tract. Each bacterial strain was treated with TiO2 at four concentrations (60, 150, 300, and 600 mg/L TiO2). The differences in the growth of the individual strains were caused by the type and concentration of TiO2. It was shown that the growth of a majority of the analyzed strains was decreased by the application of E171 and TiO2 NPs already at the concentration of 150 and 300 mg/L. At the highest dose (600 mg/L) of the nanoparticles, the reactions of the bacteria to the different TiO2 types used in the experiment varied.

18.
Cancers (Basel) ; 13(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072003

RESUMO

AIM: The anti-glioma effect of lensoside Aß alone and in combination with sorafenib (pro-survival Raf kinase inhibitor) was evaluated for the first time in terms of programmed cell death induction in anaplastic astrocytoma and glioblastoma multiforme cell lines as an experimental model. Apoptosis, autophagy, and necrosis were identified microscopically (fluorescence and scanning microscopes) and confirmed by flow cytometry (mitochondrial membrane potential MMP and cell death). The expression of apoptotic (caspase 3) and autophagic markers (beclin 1) as well as Raf kinase were estimated by immunoblotting. The FTIR method was used to determine the interaction of the studied drugs with lipid and protein groups within cells, while the modes of drug action within the cells were assessed with the FLIM technique. RESULTS: Lensoside Aß itself does not exhibit anti-glioma activity but significantly enhances the anti-cancer potential of sorafenib, initiating mainly apoptosis of up to 90% of cells. It was correlated with an increased level of active caspase 3, a reduced MMP value, and a lower level of Raf kinase. The interaction with membrane structures led to morphological changes typical of programmed death. CONCLUSIONS: Our results indicate that lensoside Aß plays an important role as an adjuvant in chemotherapy with sorafenib and may be a potential candidate in anti-glioma combination therapy.

19.
Biomolecules ; 10(1)2020 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947983

RESUMO

Three serine protease inhibitors (AEBSF, soy inhibitor, α1-antitrypsin) were covalently immobilized on the surface of three polymer prostheses with the optimized method. The immobilization efficiency ranged from 11 to 51%, depending on the chosen inhibitor and biomaterial. The highest activity for all inhibitors was observed in the case of immobilization on the surface of the polyester Uni-Graft prosthesis, and the preparations obtained showed high stability in the environment with different pH and temperature values. Modification of the Uni-Graft prosthesis surface with the synthetic AEBSF inhibitor and human α1-antitrypsin inhibited the adhesion and multiplication of Staphylococcus aureus subs. aureus ATCC® 25923TM and Candida albicans from the collection of the Department of Genetics and Microbiology, UMCS. Optical profilometry analysis indicated that, after the immobilization process on the surface of AEBSF-modified Uni-Graft prostheses, there were more structures with a high number of protrusions, while the introduction of modifications with a protein inhibitor led to the smoothing of their surface.


Assuntos
Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo , Inibidores de Serina Proteinase/farmacologia , Antibacterianos/farmacologia , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Candida albicans/efeitos dos fármacos , Endopeptidases , Humanos , Polímeros , Staphylococcus aureus/efeitos dos fármacos , Sulfonas/química , Sulfonas/farmacologia , alfa 1-Antitripsina/química , alfa 1-Antitripsina/farmacologia
20.
Int J Biol Macromol ; 148: 1307-1315, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31739051

RESUMO

We have described for the first time the localisation of oxalate oxidase (OXO, EC 1.2.3.4) in Abortiporus biennis cells, using histochemical and immunochemical methods coupled with transmission electron microscopy. Rabbit anti-oxalate oxidase immunoglobulins with anti-rabbit secondary antibody conjugated with 10-nm gold particles were used. Moreover, the formation of electron dense precipitation of reaction of diaminobenzidine (DAB) with horseradish peroxidase (HRP) for histochemical localisation of the enzyme was found. OXO was localised close to the membranous structures of the cell membranes, in membranous vesicles located close to the outer cell membrane, and vacuolar membranes surrounding vacuoles. The positive immunoreaction to OXO was also intense in cell wall areas. Moreover, we proved that gene coding for OXO was expressed in the same cultures. Corresponding mRNA was isolated, full length cDNA was synthesized, cloned and sequenced. Two copies of cupin domains were found in the sequence of amino-acids conserved domain coding for the cupin enzyme. Comparison of the genomic DNA and cDNA sequences has revealed the presence of seventeen introns in the gene. The isoelectric point of the protein was estimated at pH 4.5 and several possible N-glycosylation sites were predicted.


Assuntos
Basidiomycota/enzimologia , Basidiomycota/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Basidiomycota/ultraestrutura , DNA Complementar , Ativação Enzimática , Imuno-Histoquímica , Oxirredutases/química , Oxirredutases/isolamento & purificação , Transporte Proteico , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA