Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 585(7824): 225-233, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908268

RESUMO

Isoprene is the dominant non-methane organic compound emitted to the atmosphere1-3. It drives ozone and aerosol production, modulates atmospheric oxidation and interacts with the global nitrogen cycle4-8. Isoprene emissions are highly uncertain1,9, as is the nonlinear chemistry coupling isoprene and the hydroxyl radical, OH-its primary sink10-13. Here we present global isoprene measurements taken from space using the Cross-track Infrared Sounder. Together with observations of formaldehyde, an isoprene oxidation product, these measurements provide constraints on isoprene emissions and atmospheric oxidation. We find that the isoprene-formaldehyde relationships measured from space are broadly consistent with the current understanding of isoprene-OH chemistry, with no indication of missing OH recycling at low nitrogen oxide concentrations. We analyse these datasets over four global isoprene hotspots in relation to model predictions, and present a quantification of isoprene emissions based directly on satellite measurements of isoprene itself. A major discrepancy emerges over Amazonia, where current underestimates of natural nitrogen oxide emissions bias modelled OH and hence isoprene. Over southern Africa, we find that a prominent isoprene hotspot is missing from bottom-up predictions. A multi-year analysis sheds light on interannual isoprene variability, and suggests the influence of the El Niño/Southern Oscillation.


Assuntos
Atmosfera/química , Butadienos/análise , Butadienos/química , Mapeamento Geográfico , Hemiterpenos/análise , Hemiterpenos/química , Imagens de Satélites , África , Austrália , Brasil , Conjuntos de Dados como Assunto , El Niño Oscilação Sul , Formaldeído/química , Radical Hidroxila/análise , Radical Hidroxila/química , Ciclo do Nitrogênio , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Oxirredução , Estações do Ano , Sudeste dos Estados Unidos
2.
J Quant Spectrosc Radiat Transf ; 186: 118-138, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27840454

RESUMO

Retrievals of atmospheric composition from near-infrared measurements require measurements of airmass to better than the desired precision of the composition. The oxygen bands are obvious choices to quantify airmass since the mixing ratio of oxygen is fixed over the full range of atmospheric conditions. The OCO-2 mission is currently retrieving carbon dioxide concentration using the oxygen A-band for airmass normalization. The 0.25% accuracy desired for the carbon dioxide concentration has pushed the required state-of-the-art for oxygen spectroscopy. To measure O2 A-band cross-sections with such accuracy through the full range of atmospheric pressure requires a sophisticated line-shape model (Rautian or Speed-Dependent Voigt) with line mixing (LM) and collision induced absorption (CIA). Models of each of these phenomena exist, however, this work presents an integrated self-consistent model developed to ensure the best accuracy. It is also important to consider multiple sources of spectroscopic data for such a study in order to improve the dynamic range of the model and to minimize effects of instrumentation and associated systematic errors. The techniques of Fourier Transform Spectroscopy (FTS) and Cavity Ring-Down Spectroscopy (CRDS) allow complimentary information for such an analysis. We utilize multispectrum fitting software to generate a comprehensive new database with improved accuracy based on these datasets. The extensive information will be made available as a multi-dimensional cross-section (ABSCO) table and the parameterization will be offered for inclusion in the HITRANonline database.

3.
Sci Adv ; 10(20): eadn1115, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748807

RESUMO

The hydroxyl radical (OH) is the central oxidant in Earth's troposphere, but its temporal variability is poorly understood. We combine 2012-2020 satellite-based isoprene and formaldehyde measurements to identify coherent OH changes over temperate and tropical forests with attribution to emission trends, biotic stressors, and climate. We identify a multiyear OH decrease over the Southeast United States and show that with increasingly hot/dry summers the regional chemistry could become even less oxidizing depending on competing temperature/drought impacts on isoprene. Furthermore, while global mean OH decreases during El Niño, we show that near-field effects over tropical rainforests can alternate between high/low OH anomalies due to opposing fire and biogenic emission impacts. Results provide insights into how atmospheric oxidation will evolve with changing emissions and climate.

4.
Nat Commun ; 10(1): 3811, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444348

RESUMO

Isoprene is the atmosphere's most important non-methane organic compound, with key impacts on atmospheric oxidation, ozone, and organic aerosols. In-situ isoprene measurements are sparse, and satellite-based constraints have employed an indirect approach using its oxidation product formaldehyde, which is affected by non-isoprene sources plus uncertainty and spatial smearing in the isoprene-formaldehyde relationship. Direct global isoprene measurements are therefore needed to better understand its sources, sinks, and atmospheric impacts. Here we show that the isoprene spectral signatures are detectable from space using the satellite-borne Cross-track Infrared Sounder (CrIS), develop a full-physics retrieval methodology for quantifying isoprene abundances from these spectral features, and apply the algorithm to CrIS measurements over Amazonia. The results are consistent with model output and in-situ data, and establish the feasibility of direct global space-based isoprene measurements. Finally, we demonstrate the potential for combining space-based measurements of isoprene and formaldehyde to constrain atmospheric oxidation over isoprene source regions.

5.
J Geophys Res Atmos ; 124(12): 6554-6570, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32455093

RESUMO

We investigate the air quality impact of record-breaking wildfires in Southern California during 5-18 December 2017 using the Weather Research and Forecasting model with Chemistry in combination with satellite and surface observations. This wildfire event was driven by dry and strong offshore Santa Ana winds, which played a critical role in fire formation and air pollutant transport. By utilizing fire emissions derived from the high-resolution (375 × 375 m2) Visible Infrared Imaging Radiometer Suite active fire detections, the simulated magnitude and temporal evolution of fine particulate matter (PM2.5) concentrations agree reasonably well with surface observations (normalized mean bias = 4.0%). Meanwhile, the model could generally capture the spatial pattern of aerosol optical depth from satellite observations. Sensitivity tests reveal that using a high spatial resolution for fire emissions and a reasonable treatment of plume rise (a fair split between emissions injected at surface and those lifted to upper levels) is important for achieving decent PM2.5 simulation results. Biases in PM2.5 simulation are relatively large (about 50%) during the period with the strongest Santa Ana wind, due to a possible underestimation of burning area and uncertainty in wind field variation. The 2017 December fire event increases the 14-day averaged PM2.5 concentrations by up to 231.2 µg/m3 over the downwind regions, which substantially exceeds the U.S. air quality standards, potentially leading to adverse health impacts. The human exposure to fire-induced PM2.5 accounts for 14-42% of the annual total PM2.5 exposure in areas impacted by the fire plumes.

6.
Atmos Chem Phys ; 17: 5721-5750, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29780406

RESUMO

The recent update on the US National Ambient Air Quality Standards (NAAQS) of the ground-level ozone (O3/ can benefit from a better understanding of its source contributions in different US regions during recent years. In the Hemispheric Transport of Air Pollution experiment phase 1 (HTAP1), various global models were used to determine the O3 source-receptor (SR) relationships among three continents in the Northern Hemisphere in 2001. In support of the HTAP phase 2 (HTAP2) experiment that studies more recent years and involves higher-resolution global models and regional models' participation, we conduct a number of regional-scale Sulfur Transport and dEposition Model (STEM) air quality base and sensitivity simulations over North America during May-June 2010. STEM's top and lateral chemical boundary conditions were downscaled from three global chemical transport models' (i.e., GEOS-Chem, RAQMS, and ECMWF C-IFS) base and sensitivity simulations in which the East Asian (EAS) anthropogenic emissions were reduced by 20 %. The mean differences between STEM surface O3 sensitivities to the emission changes and its corresponding boundary condition model's are smaller than those among its boundary condition models, in terms of the regional/period-mean (<10 %) and the spatial distributions. An additional STEM simulation was performed in which the boundary conditions were downscaled from a RAQMS (Realtime Air Quality Modeling System) simulation without EAS anthropogenic emissions. The scalability of O3 sensitivities to the size of the emission perturbation is spatially varying, and the full (i.e., based on a 100% emission reduction) source contribution obtained from linearly scaling the North American mean O3 sensitivities to a 20% reduction in the EAS anthropogenic emissions may be underestimated by at least 10 %. The three boundary condition models' mean O3 sensitivities to the 20% EAS emission perturbations are ~8% (May-June 2010)/~11% (2010 annual) lower than those estimated by eight global models, and the multi-model ensemble estimates are higher than the HTAP1 reported 2001 conditions. GEOS-Chem sensitivities indicate that the EAS anthropogenic NO x emissions matter more than the other EAS O3 precursors to the North American O3, qualitatively consistent with previous adjoint sensitivity calculations. In addition to the analyses on large spatial-temporal scales relative to the HTAP1, we also show results on subcontinental and event scales that are more relevant to the US air quality management. The EAS pollution impacts are weaker during observed O3 exceedances than on all days in most US regions except over some high-terrain western US rural/remote areas. Satellite O3 (TES, JPL-IASI, and AIRS) and carbon monoxide (TES and AIRS) products, along with surface measurements and model calculations, show that during certain episodes stratospheric O3 intrusions and the transported EAS pollution influenced O3 in the western and the eastern US differently. Free-running (i.e., without chemical data assimilation) global models underpredicted the transported background O3 during these episodes, posing difficulties for STEM to accurately simulate the surface O3 and its source contribution. Although we effectively improved the modeled O3 by incorporating satellite O3 (OMI and MLS) and evaluated the quality of the HTAP2 emission inventory with the Royal Netherlands Meteorological Institute-Ozone Monitoring Instrument (KNMI-OMI) nitrogen dioxide, using observations to evaluate and improve O3 source attribution still remains to be further explored.

7.
Philos Trans A Math Phys Eng Sci ; 370(1968): 2520-56, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22547231

RESUMO

Water vapour continuum absorption is an important contributor to the Earth's radiative cooling and energy balance. Here, we describe the development and status of the MT_CKD (MlawerTobinCloughKneizysDavies) water vapour continuum absorption model. The perspective adopted in developing the MT_CKD model has been to constrain the model so that it is consistent with quality analyses of spectral atmospheric and laboratory measurements of the foreign and self continuum. For field measurements, only cases for which the characterization of the atmospheric state has been highly scrutinized have been used. Continuum coefficients in spectral regions that have not been subject to compelling analyses are determined by a mathematical formulation of the spectral shape associated with each water vapour monomer line. This formulation, which is based on continuum values in spectral regions in which the coefficients are well constrained by measurements, is applied consistently to all water vapour monomer lines from the microwave to the visible. The results are summed-up (separately for the foreign and self) to obtain continuum coefficients from 0 to 20 000 cm(-1). For each water vapour line, the MT_CKD line shape formulation consists of two components: exponentially decaying far wings of the line plus a contribution from a water vapour molecule undergoing a weak interaction with a second molecule. In the MT_CKD model, the first component is the primary agent for the continuum between water vapour bands, while the second component is responsible for the majority of the continuum within water vapour bands. The MT_CKD model should be regarded as a semi-empirical model with strong constraints provided by the known physics. Keeping the MT_CKD continuum consistent with current observational studies necessitates periodic updates to the water vapour continuum coefficients. In addition to providing details on the MT_CKD line shape formulation, we describe the most recent update to the model, MT_CKD_2.5, which is based on an analysis of satellite- and ground-based observations from 2385 to 2600 cm(-1) (approx. 4 µm).

8.
Atmosphere (Basel) ; 2(4): 633-654, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33758673

RESUMO

We use the Tropospheric Emission Spectrometer (TES) aboard the NASA Aura satellite to determine the concentrations of the trace gases ammonia (NH3) and formic acid (HCOOH) within boreal biomass burning plumes, and present the first detection of peroxy acetyl nitrate (PAN) and ethylene (C2H4) by TES. We focus on two fresh Canadian plumes observed by TES in the summer of 2008 as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS-B) campaign. We use TES retrievals of NH3 and HCOOH within the smoke plumes to calculate their emission ratios (1.0% ± 0.5% and 0.31% ± 0.21%, respectively) relative to CO for these Canadian fires. The TES derived emission ratios for these gases agree well with previous aircraft and satellite estimates, and can complement ground-based studies that have greater surface sensitivity. We find that TES observes PAN mixing ratios of ~2 ppb within these mid-tropospheric boreal biomass burning plumes when the average cloud optical depth is low (<0.1) and that TES can detect C2H4 mixing ratios of ~2 ppb in fresh biomass burning smoke plumes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA