Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 4436, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895377

RESUMO

Despite recent advances, the link between the evolution of atmospheric CO2 and climate during the Eocene greenhouse remains uncertain. In particular, modelling studies suggest that in order to achieve the global warmth that characterised the early Eocene, warmer climates must be more sensitive to CO2 forcing than colder climates. Here, we test this assertion in the geological record by combining a new high-resolution boron isotope-based CO2 record with novel estimates of Global Mean Temperature. We find that Equilibrium Climate Sensitivity (ECS) was indeed higher during the warmest intervals of the Eocene, agreeing well with recent model simulations, and declined through the Eocene as global climate cooled. These observations indicate that the canonical IPCC range of ECS (1.5 to 4.5 °C per doubling) is unlikely to be appropriate for high-CO2 warm climates of the past, and the state dependency of ECS may play an increasingly important role in determining the state of future climate as the Earth continues to warm.

2.
Nature ; 406(6797): 695-9, 2000 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-10963587

RESUMO

Knowledge of the evolution of atmospheric carbon dioxide concentrations throughout the Earth's history is important for a reconstruction of the links between climate and radiative forcing of the Earth's surface temperatures. Although atmospheric carbon dioxide concentrations in the early Cenozoic era (about 60 Myr ago) are widely believed to have been higher than at present, there is disagreement regarding the exact carbon dioxide levels, the timing of the decline and the mechanisms that are most important for the control of CO2 concentrations over geological timescales. Here we use the boron-isotope ratios of ancient planktonic foraminifer shells to estimate the pH of surface-layer sea water throughout the past 60 million years, which can be used to reconstruct atmospheric CO2 concentrations. We estimate CO2 concentrations of more than 2,000 p.p.m. for the late Palaeocene and earliest Eocene periods (from about 60 to 52 Myr ago), and find an erratic decline between 55 and 40 Myr ago that may have been caused by reduced CO2 outgassing from ocean ridges, volcanoes and metamorphic belts and increased carbon burial. Since the early Miocene (about 24 Myr ago), atmospheric CO2 concentrations appear to have remained below 500 p.p.m. and were more stable than before, although transient intervals of CO2 reduction may have occurred during periods of rapid cooling approximately 15 and 3 Myr ago.


Assuntos
Atmosfera , Dióxido de Carbono/análise , Animais , Carbono/química , Evolução Planetária , Concentração de Íons de Hidrogênio , Plâncton/química , Água do Mar
3.
Science ; 300(5618): 480-2, 2003 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-12663815

RESUMO

The oceans play a major role in defining atmospheric carbon dioxide (CO2) levels, and although the geographical distribution of CO2 uptake and release in the modern ocean is understood, little is known about past distributions. Boron isotope studies of planktonic foraminifera from the western equatorial Pacific show that this area was a strong source of CO2 to the atmosphere between approximately 13,800 and 15,600 years ago. This observation is most compatible with increased frequency of La Niña conditions during this interval. Hence, increased upwelling in the eastern equatorial Pacific may have played an important role in the rise in atmospheric CO2 during the last deglaciation.

4.
Trends Ecol Evol ; 16(7): 405-411, 2001 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-11403874

RESUMO

It is easy to claim that the fossil record says nothing about speciation because the biological species concept (which relies on interbreeding) cannot be applied to it and genetic studies cannot be carried out on it. However, fossilized organisms are often preserved in sufficient abundance for populations of intergrading morphs to be recognized, which, by analogy with modern populations, are probably biological species. Moreover, the fossil record is our only reliable documentation of the sequence of past events over long time intervals: the processes of speciation are generally too slow to be observed directly, and permanent reproductive isolation can only be verified with hindsight. Recent work has shown that some parts of the fossil record are astonishingly complete and well documented, and patterns of lineage splitting can be examined in detail. Marine plankton appear to show gradual speciation, with subsequent morphological differentiation of lineages taking up to 500000 years to occur. Marine invertebrates and vertebrates more commonly show punctuated patterns, with periods of rapid speciation followed by long-term stasis of species lineages.

5.
Nature ; 413(6855): 481-7, 2001 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-11586350

RESUMO

Climate models with increased levels of carbon dioxide predict that global warming causes heating in the tropics, but investigations of ancient climates based on palaeodata have generally indicated cool tropical temperatures during supposed greenhouse episodes. For example, in the Late Cretaceous and Eocene epochs there is abundant geological evidence for warm, mostly ice-free poles, but tropical sea surface temperatures are generally estimated to be only 15-23 degrees C, based on oxygen isotope palaeothermometry of surface-dwelling planktonic foraminifer shells. Here we question the validity of most such data on the grounds of poor preservation and diagenetic alteration. We present new data from exceptionally well preserved foraminifer shells extracted from impermeable clay-rich sediments, which indicate that for the intervals studied, tropical sea surface temperatures were at least 28-32 degrees C. These warm temperatures are more in line with our understanding of the geographical distributions of temperature-sensitive fossil organisms and the results of climate models with increased CO2 levels.


Assuntos
Plâncton , Clima Tropical , Animais , Evolução Biológica , Eucariotos/ultraestrutura , Fósseis , Oceanos e Mares , Isótopos de Oxigênio , Plâncton/ultraestrutura , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA