Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 114(4): 110439, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35905834

RESUMO

High-throughput assay systems have had a large impact on understanding the mechanisms of basic cell functions. However, high-throughput assays that directly assess molecular functions are limited. Herein, we describe the "GigaAssay", a modular high-throughput one-pot assay system for measuring molecular functions of thousands of genetic variants at once. In this system, each cell was infected with one virus from a library encoding thousands of Tat mutant proteins, with each viral particle encoding a random unique molecular identifier (UMI). We demonstrate proof of concept by measuring transcription of a GFP reporter in an engineered reporter cell line driven by binding of the HIV Tat transcription factor to the HIV long terminal repeat. Infected cells were flow-sorted into 3 bins based on their GFP fluorescence readout. The transcriptional activity of each Tat mutant was calculated from the ratio of signals from each bin. The use of UMIs in the GigaAssay produced a high average accuracy (95%) and positive predictive value (98%) determined by comparison to literature benchmark data, known C-terminal truncations, and blinded independent mutant tests. Including the substitution tolerance with structure/function analysis shows restricted substitution types spatially concentrated in the Cys-rich region. Tat has abundant intragenic epistasis (10%) when single and double mutants are compared.


Assuntos
HIV-1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Linhagem Celular , Repetição Terminal Longa de HIV , HIV-1/genética , Mutagênese , Ativação Transcricional , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
2.
Data Brief ; 45: 108641, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36426049

RESUMO

The data in this article are associated with the research paper "GigaAssay - an adaptable high-throughput saturation mutagenesis assay" [1]. The raw data are sequence reads of HIV-1 Tat cDNA amplified from cellular genomic DNA in a new single-pot saturation mutagenesis assay designated the "GigaAssay". A bioinformatic pipeline and parameters used to analyze the data. Raw, processed, analyzed, and filtered data are reported. The data is processed to calculate the Tat-driven transcription activity for cells with each possible single amino acid substitution in Tat. This data can be reused to interpret Tat intermolecular interactions and HIV latency. This is one of the largest and most complete datasets regarding the impact of amino acid substitutions within a single protein on a molecular function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA