Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Genomics ; 17(1): 82, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658463

RESUMO

This review presents current knowledge on the molecular biology of retinoblastoma (RB). Retinoblastoma is an intraocular tumor with hereditary and sporadic forms. 8,000 new cases of this ocular malignancy of the developing retina are diagnosed each year worldwide. The major gene responsible for retinoblastoma is RB1, and it harbors a large spectrum of pathogenic variants. Tumorigenesis begins with mutations that cause RB1 biallelic inactivation preventing the production of functional pRB proteins. Depending on the type of mutation the penetrance of RB is different. However, in small percent of tumors additional genes may be required, such as MYCN, BCOR and CREBBP. Additionally, epigenetic changes contribute to the progression of retinoblastoma as well. Besides its role in the cell cycle, pRB plays many additional roles, it regulates the nucleosome structure, participates in apoptosis, DNA replication, cellular senescence, differentiation, DNA repair and angiogenesis. Notably, pRB has an important role as a modulator of chromatin remodeling. In recent years high-throughput techniques are becoming essential for credible biomarker identification and patient management improvement. In spite of remarkable advances in retinoblastoma therapy, primarily in high-income countries, our understanding of retinoblastoma and its specific genetics still needs further clarification in order to predict the course of this disease and improve therapy. One such approach is the tumor free DNA that can be obtained from the anterior segment of the eye and be useful in diagnostics and prognostics.


Assuntos
Oftalmologia , Neoplasias da Retina , Retinoblastoma , Humanos , Retinoblastoma/genética , Retina , Apoptose , Neoplasias da Retina/genética
3.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047705

RESUMO

In a continuous search for the improvement of antitumor therapies, the inhibition of the Wnt signaling pathway has been recognized as a promising target. The altered functioning of the Wnt signaling in human tumors points to the strategy of the inhibition of its activity that would impact the clinical outcomes and survival of patients. Because the Wnt pathway is often mutated or epigenetically altered in tumors, which promotes its activation, inhibitors of Wnt signaling are being intensively investigated. It has been shown that knocking down specific components of the Wnt pathway has inhibitory effects on tumor growth in vivo and in vitro. Thus, similar effects are expected from the application of Wnt inhibitors. In the last decades, molecules acting as inhibitors on the pathway's specific molecular levels have been identified and characterized. This review will discuss the inhibitors of the canonical Wnt pathway, summarize knowledge on their effectiveness as therapeutics, and debate their side effects. The role of the components frequently mutated in various tumors that are principal targets for Wnt inhibitors is also going to be brought to the reader's attention. Some of the molecules identified as Wnt pathway inhibitors have reached early stages of clinical trials, and some have only just been discovered. All things considered, inhibition of the Wnt signaling pathway shows potential for the development of future therapies.


Assuntos
Neoplasias , Via de Sinalização Wnt , Humanos , Neoplasias/tratamento farmacológico , beta Catenina/metabolismo
4.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163107

RESUMO

Here, we present a rarely seen example of bilateral meningiomas exhibiting different malignancy grades, I (meningothelial) and II (atypical), recorded in a 72-year-old patient. The presence of two separated lesions of different grades in a single patient can elucidate meningioma progression. To this end, the involvement of specific protein markers of epithelial to mesenchymal transition (EMT), the process responsible for progression, was tested in both tumors. Protein expression status of specific epithelial (E-cadherin) and mesenchymal markers (N-cadherin, SNAIL&SLUG and TWIST1) was investigated. Furthermore, markers that are connected to Wnt signaling pathway-beta-catenin, GSK3beta and DVL1-were also analyzed. For signs of neurofibromatosis and schwanomatosis genetic testing was performed. Immunohistochemistry evaluated by immunoreactivity score (IRS) was used to determine the signal strengths and proteins' location. Our results indicated that, in comparison to the grade I tumor, mesenchymal markers SNAIL and SLUG were upregulated in the atypical meningioma. TWIST1, beta-catenin and GSK3beta were upregulated in both grades, while E-cadherin was partially lost. A pronounced cadherin switch could not be established; however, N-cadherin showed widespread tissue presence. Genetic testing did not detect changes of NF2 or SMARCB1 genes denying germline origin of the lesions. The rare presence of two different grades in one patient elucidate previously unknown molecules involved in meningioma progression.


Assuntos
Biomarcadores Tumorais/genética , Testes Genéticos/métodos , Neoplasias Meníngeas/patologia , Meningioma/patologia , Idoso , Feminino , Humanos , Neoplasias Meníngeas/genética , Meningioma/genética
5.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769425

RESUMO

In the search for molecular candidates for targeted meningioma therapies, increasing attention has been paid to the role of signaling pathways in the development and progression of intracranial meningiomas. Although it is well known that the Wnt signaling pathway is involved in meningioma progression, the role of its central mediator, DVL1, is still unclear. In order to investigate the influence of DVL1 gene alterations on the progression of human intracranial meningioma, we focused on its central PDZ domain, which is responsible for DVL interaction with the Fzd receptor and the phosphorylation of DVL mediated through the casein kinases CK1 and CK2. A genetic analysis of genomic instability revealed the existence of microsatellite instability in 9.09% and the loss of heterozygosity in 6.06% of the samples. The sequencing of the PDZ gene region showed repetitive deletions of two bases located in intron 7 and exon 8, and a duplication in intron 8 in most samples, with different outcomes on the biological function of the DVL1 protein. Immunohistochemistry revealed that the nuclear expression of DVL1 was significantly correlated with a higher expression of active ß-catenin (p = 0.029) and a higher meningioma grade (p = 0.030), which leads to the conclusion that it could be used as biomarker for meningioma progression and the activation of the Wnt signaling pathway.


Assuntos
Proteínas Desgrenhadas/genética , Meningioma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas Desgrenhadas/metabolismo , Feminino , Humanos , Masculino , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/metabolismo , Meningioma/patologia , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Mutação , Domínios PDZ , Prognóstico , Adulto Jovem , beta Catenina/genética , beta Catenina/metabolismo
6.
J Cell Mol Med ; 23(1): 641-655, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30468298

RESUMO

Key regulators of the Wnt signalling, DVL1, DVL2 and DVL3, in astrocytomas of different malignancy grades were investigated. Markers for DVL1, DVL2 and DVL3 were used to detect microsatellite instability (MSI) and gross deletions (LOH), while immunohistochemistry and immunoreactivity score were used to determine the signal strengths of the three DVL proteins and transcription factors of the pathway, TCF1 and LEF1. Our findings demonstrated that MSI at all three DVL loci was constantly found across tumour grades with the highest number in grade II (P = 0.008). Collectively, LOHs were more frequent in high-grade tumours than in low grade ones. LOHs of DVL3 gene were significantly associated with grade IV tumours (P = 0.007). The results on protein expressions indicated that high-grade tumours expressed less DVL1 protein as compared with low grade ones. A significant negative correlation was established between DVL1 expression and malignancy grades (P < 0.001). The expression of DVL2 protein was found similar across grades, while DVL3 expression significantly increased with malignancy grades (P < 0.001). The signal strengths of expressed DVL1 and DVL3 were negatively correlated (P = 0.002). However, TCF1 and LEF1 were both significantly upregulated and increasing with astrocytoma grades (P = 0.001). A positive correlation was established between DVL3 and both TCF1 (P = 0.020) and LEF1 (P = 0.006) suggesting their joint involvement in malignant progression. Our findings suggest that DVL1 and DVL2 may be involved during early stages of the disease, while DVL3 may have a role in later phases and together with TCF1 and LEF1 promotes the activation of Wnt signalling.


Assuntos
Astrocitoma/genética , Proteínas Desgrenhadas/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1 de Ligação ao Facilitador Linfoide/genética , Regulação para Cima/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Deleção de Sequência/genética , Via de Sinalização Wnt/genética , Adulto Jovem
7.
Int J Mol Sci ; 20(5)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871102

RESUMO

A collection of intracranial astrocytomas of different malignancy grades was analyzed for copy number aberrations (CNA) in order to identify regions that are driving cancer pathogenesis. Astrocytomas were analyzed by Array Comparative Genomic Hybridization (aCGH) and bioinformatics utilizing a Bioconductor package, Genomic Identification of Significant Targets in Cancer (GISTIC) 2.0.23 and DAVID software. Altogether, 1438 CNA were found of which losses prevailed. On our total sample, significant deletions affected 14 chromosomal regions, out of which deletions at 17p13.2, 9p21.3, 13q12.11, 22q12.3 remained significant even at 0.05 q-value. When divided into malignancy groups, the regions identified as significantly deleted in high grades were: 9p21.3; 17p13.2; 10q24.2; 14q21.3; 1p36.11 and 13q12.11, while amplified were: 3q28; 12q13.3 and 21q22.3. Low grades comprised significant deletions at 3p14.3; 11p15.4; 15q15.1; 16q22.1; 20q11.22 and 22q12.3 indicating their involvement in early stages of tumorigenesis. Significantly enriched pathways were: PI3K-Akt, Cytokine-cytokine receptor, the nucleotide-binding oligomerization domain (NOD)⁻like receptor, Jak-STAT, retinoic acid-inducible gene (RIG)-I-like receptor and Toll-like receptor pathways. HPV and herpex simplex infection and inflammation pathways were also represented. The present study brings new data to astrocytoma research amplifying the wide spectrum of changes that could help us identify the regions critical for tumorigenesis.


Assuntos
Astrocitoma/genética , Astrocitoma/patologia , Variações do Número de Cópias de DNA/genética , Adulto , Idoso , Carcinogênese/genética , Carcinogênese/patologia , Aberrações Cromossômicas , Hibridização Genômica Comparativa/métodos , Feminino , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Adulto Jovem
8.
Croat Med J ; 59(5): 213-223, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30394013

RESUMO

AIM: To identify the involvement of Secreted Frizzled Related Protein 1 (SFRP1) promoter hypermethylation in different malignancy grades of astrocytoma and assess its association with beta-catenin, lymphoid-enhancer factor 1, and T-cell factor 1. METHODS: Twenty-six astrocytoma samples were collected from 2008-2015. Promoter hypermethylation was evaluated by methylation-specific polymerase-chain-reaction and protein expression by immunohistochemistry and stereological analysis. The staining intensity was scored by comparing immunoreactivity with normal tissue and by using 10% and 50% cut-offs. RESULTS: SFRP1 promoter methylation was found in 32% of astrocytomas. The number of hypermethylated samples increased in higher astrocytoma grades and was the highest in glioblastoma (P=0.042 compared to other astrocytoma grades). There was 45.8% of samples with the lack of or weak expression of SFRP1 protein and 29.2% with strong expression. Samples with methylated promoter expressed significantly less SFRP1 than samples with unmethylated promoter (P=0.031). Beta-catenin expression levels were elevated. Yet, glioblastomas with unmethylated SFRP1 promoter had significantly less beta-catenin (P=0.033). Strong expression of lymphoid-enhancer factor 1 was associated to higher astrocytoma grades (P=0.006). CONCLUSION: SFRP1 gene was epigenetically silenced in glioblastomas when compared to low astrocytoma grades, which may suggest that the lack of its protein is involved in astrocytoma progression.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Metilação de DNA , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Regiões Promotoras Genéticas , Adulto , Idoso , Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Análise Mutacional de DNA , DNA de Neoplasias/genética , Epigenômica , Éxons , Feminino , Inativação Gênica , Humanos , Imuno-Histoquímica , Fator 1 de Ligação ao Facilitador Linfoide/genética , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Fator 1 de Transcrição de Linfócitos T/genética , Adulto Jovem , beta Catenina/genética
9.
Tumour Biol ; 39(7): 1010428317705791, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28705114

RESUMO

Postreplicative mismatch repair safeguards the stability of our genome. The defects in its functioning will give rise to microsatellite instability. In this study, 50 meningiomas were investigated for microsatellite instability. Two major mismatch repair genes, MLH1 and MSH2, were analyzed using microsatellite markers D1S1611 and BAT26 amplified by polymerase chain reaction and visualized by gel electrophoresis on high-resolution gels. Furthermore, genes DVL3 (D3S1262), AXIN1 (D16S3399), and CDH1 (D16S752) were also investigated for microsatellite instability. Our study revealed constant presence of microsatellite instability in meningioma patients when compared to their autologous blood DNA. Altogether 38% of meningiomas showed microsatellite instability at one microsatellite locus, 16% on two, and 13.3% on three loci. The percent of detected microsatellite instability for MSH2 gene was 14%, and for MLH1, it was 26%, for DVL3 22.9%, for AXIN1 17.8%, and for CDH1 8.3%. Since markers also allowed for the detection of loss of heterozygosity, gross deletions of MLH1 gene were found in 24% of meningiomas. Genetic changes between MLH1 and MSH2 were significantly positively correlated (p = 0.032). We also noted a positive correlation between genetic changes of MSH2 and DVL3 genes (p = 0.034). No significant associations were observed when MLH1 or MSH2 was tested against specific histopathological meningioma subtype or World Health Organization grade. However, genetic changes in DVL3 were strongly associated with anaplastic histology of meningioma (χ2 = 9.14; p = 0.01). Our study contributes to better understanding of the genetic profile of human intracranial meningiomas and suggests that meningiomas harbor defective cellular DNA mismatch repair mechanisms.


Assuntos
Proteínas Desgrenhadas/genética , Meningioma/genética , Instabilidade de Microssatélites , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Adulto , Idoso , Antígenos CD , Proteína Axina/genética , Caderinas/genética , Reparo de Erro de Pareamento de DNA/genética , Feminino , Mutação em Linhagem Germinativa/genética , Humanos , Perda de Heterozigosidade/genética , Masculino , Meningioma/patologia , Pessoa de Meia-Idade
10.
Int J Exp Pathol ; 97(2): 159-69, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27292269

RESUMO

Crosstalk between Wnt and p53 signalling pathways in cancer has long been suggested. Therefore in this study we have investigated the involvement of these pathways in meningiomas by analysing their main effector molecules, beta-catenin and p53. Cellular expression of p53 and beta-catenin proteins and genetic changes in TP53 were analysed by immunohistochemistry, PCR/RFLP and direct sequencing of TP53 exon 4. All the findings were analysed statistically. Our analysis showed that 47.5% of the 59 meningiomas demonstrated loss of expression of p53 protein. Moderate and strong p53 expression in the nuclei was observed in 8.5% and 6.8% of meningiomas respectively. Gross deletion of TP53 gene was observed in one meningioma, but nucleotide alterations were observed in 35.7% of meningiomas. In contrast, beta-catenin, the main Wnt signalling molecule, was upregulated in 71.2%, while strong expression was observed in 28.8% of meningiomas. The concomitant expressions of p53 and beta-catenin were investigated in the same patients. In the analysed meningiomas, the levels of the two proteins were significantly negatively correlated (P = 0.002). This indicates that meningiomas with lost p53 upregulate beta-catenin and activate Wnt signalling. Besides showing the reciprocal relationship between proteins, we also showed that the expression of p53 was significantly (P = 0.021) associated with higher meningioma grades (II and III), while beta-catenin upregulation was not associated with malignancy grades. Additionally, women exhibited significantly higher values of p53 loss when compared to males (P = 0.005). Our findings provide novel information about p53 involvement in meningeal brain tumours and reveal the complex relationship between Wnt and p53 signalling, they suggest an important role for beta-catenin in these tumours.


Assuntos
Meningioma/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Regulação para Cima/genética , beta Catenina/biossíntese , Adulto , Idoso , DNA de Neoplasias/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genes p53/genética , Humanos , Masculino , Meningioma/genética , Meningioma/patologia , Pessoa de Meia-Idade , Gradação de Tumores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Análise de Sequência de DNA/métodos , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , beta Catenina/genética
11.
Proc Biol Sci ; 282(1805)2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25808890

RESUMO

Farming was established in Central Europe by the Linearbandkeramik culture (LBK), a well-investigated archaeological horizon, which emerged in the Carpathian Basin, in today's Hungary. However, the genetic background of the LBK genesis is yet unclear. Here we present 9 Y chromosomal and 84 mitochondrial DNA profiles from Mesolithic, Neolithic Starcevo and LBK sites (seventh/sixth millennia BC) from the Carpathian Basin and southeastern Europe. We detect genetic continuity of both maternal and paternal elements during the initial spread of agriculture, and confirm the substantial genetic impact of early southeastern European and Carpathian Basin farming cultures on Central European populations of the sixth-fourth millennia BC. Comprehensive Y chromosomal and mitochondrial DNA population genetic analyses demonstrate a clear affinity of the early farmers to the modern Near East and Caucasus, tracing the expansion from that region through southeastern Europe and the Carpathian Basin into Central Europe. However, our results also reveal contrasting patterns for male and female genetic diversity in the European Neolithic, suggesting a system of patrilineal descent and patrilocal residential rules among the early farmers.


Assuntos
Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Fazendeiros , Comportamento Social , Agricultura , Arqueologia , Emigração e Imigração , Europa (Continente) , Feminino , Variação Genética , Humanos , Masculino , Dados de Sequência Molecular , Análise de Sequência de DNA , Meio Social
12.
Cancer Cell Int ; 15: 64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26101467

RESUMO

The development of new approaches based on wide profiling methods in studying biological and medical systems is bringing large amounts of data on a daily basis. The causes of complex diseases have been directed to the genome examination bringing formidable knowledge. We can study genome, but also proteome, exome, transcriptome, epigenome, metabolome, and newcomers too such as microbiome, connectome and exposome. The title of this editorial is paraphrasing the famous saying of Victor Schlichter from Buenos Aires children hospital in Argentina who said "How unfair! Only one health, and so many diseases". Today there is indeed a whole lot of omics. We think that we are lucky to have all the omics possible, but we also wanted to stress the importance of future holistic approach in integrating the knowledge omics has rewarded us.

13.
Croat Med J ; 55(5): 459-67, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25358879

RESUMO

Dishevelled (DVL) proteins, three of which have been identified in humans, are highly conserved components of canonical and noncanonical Wnt signaling pathways. These multifunctional proteins, originally discovered in the fruit fly, through their different domains mediate complex signal transduction: DIX (dishevelled, axin) and PDZ (postsynaptic density 95, discs large, zonula occludens-1) domains serve for canonical beta-catenin signaling, while PDZ and DEP (dishevelled, Egl-10, pleckstrin) domains serve for non-canonical signaling. In canonical or beta-catenin signaling, DVL forms large molecular supercomplexes at the plasma membrane consisting of Wnt-Fz-LRP5/6-DVL-AXIN. This promotes the disassembly of the beta-catenin destruction machinery, beta-catenin accumulation, and consequent activation of Wnt signaling. Therefore, DVLs are considered to be key regulators that rescue cytoplasmic beta-catenin from degradation. The potential medical importance of DVLs is in both human degenerative disease and cancer. The overexpression of DVL has been shown to potentiate the activation of Wnt signaling and it is now apparent that up-regulation of DVLs is involved in several types of cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Sanguíneas/fisiologia , Fosfoproteínas/fisiologia , Transdução de Sinais/fisiologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Animais , Proteínas Desgrenhadas , Humanos , Regulação para Cima
14.
Int J Mol Sci ; 15(6): 10635-51, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24933634

RESUMO

The susceptibility of brain to secondary formation from lung cancer primaries is a well-known phenomenon. In contrast, the molecular basis for invasion and metastasis to the brain is largely unknown. In the present study, 31 brain metastases that originated from primary lung carcinomas were analyzed regarding over expression of Dishevelled-1 (DVL1), Dishevelled-3 (DVL3), E-cadherin (CDH1) and beta-catenin (CTNNB1). Protein expressions and localizations were analyzed by immunohistochemistry. Genetic alterations of E-cadherin were tested by polymerase chain reaction (PCR)/loss of heterozygosity (LOH). Heteroduplex was used to investigate mutations in beta-catenin. DVL1 and DVL3 showed over expression in brain metastasis in 87.1% and 90.3% of samples respectively. Nuclear staining was observed in 54.8% of cases for DVL1 and 53.3% for DVL3. The main effector of the Wnt signaling, beta-catenin, was up-regulated in 56%, and transferred to the nucleus in 36% of metastases. When DVL1 and DVL3 were up-regulated the number of cases with nuclear beta-catenin significantly increased (p=0.0001). Down-regulation of E-cadherin was observed in 80% of samples. Genetic analysis showed 36% of samples with LOH of the CDH1. In comparison to other lung cancer pathologies, the diagnoses adenocarcinoma and small cell lung cancer (SCLC) were significantly associated to CDH1 LOH (p=0.001). Microsatellite instability was detected in one metastasis from adenocarcinoma. Exon 3 of beta-catenin was not targeted. Altered expression of Dishevelled-1, Dishevelled-3, E-cadherin and beta-catenin were present in brain metastases which indicates that Wnt signaling is important and may contribute to better understanding of genetic profile conditioning lung cancer metastasis to the brain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Encefálicas/metabolismo , Caderinas/metabolismo , Neoplasias Pulmonares/patologia , Fosfoproteínas/metabolismo , beta Catenina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Caderinas/genética , Proteínas Desgrenhadas , Regulação para Baixo , Feminino , Humanos , Perda de Heterozigosidade , Neoplasias Pulmonares/metabolismo , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Via de Sinalização Wnt
15.
Cancers (Basel) ; 16(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672638

RESUMO

On a molecular level, glioma is very diverse and presents a whole spectrum of specific genetic and epigenetic alterations. The tumors are unfortunately resistant to available therapies and the survival rate is low. The explanation of significant intra- and inter-tumor heterogeneity and the infiltrative capability of gliomas, as well as its resistance to therapy, recurrence and aggressive behavior, lies in a small subset of tumor-initiating cells that behave like stem cells and are known as glioma cancer stem cells (GCSCs). They are responsible for tumor plasticity and are influenced by genetic drivers. Additionally, GCSCs also display greater migratory abilities. A great effort is under way in order to find ways to eliminate or neutralize GCSCs. Many different treatment strategies are currently being explored, including modulation of the tumor microenvironment, posttranscriptional regulation, epigenetic modulation and immunotherapy.

16.
Front Mol Neurosci ; 17: 1398872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993819

RESUMO

Introduction: Epigenetics play a vital role in stratifying CNS tumors and gliomas. The importance of studying Secreted frizzled-related protein 4 (SFRP4) in gliomas is to improve diffuse glioma methylation profiling. Here we examined the methylation status of SFRP4 promoter and the level of its protein expression in diffuse gliomas WHO grades 2-4. Methods: SFRP4 expression was detected by immunohistochemistry and evaluated semi-quantitatively. In the tumor hot-spot area, the intensity of protein expression in 200 cells was determined using ImageJ (National Institutes of Health, United States). The assessment of immunopositivity was based on the IRS score (Immunoreactivity Score). Promoter methylation was examined by methylation specific-PCR (MSP) in fifty-one diffuse glioma samples and appropriate controls. Isolated DNA was treated with bisulfite conversion and afterwards used for MSP. Public databases (cBioPortal, COSMIC and LOVD) were searched to corroborate the results. Results and discussion: SFRP4 protein expression in glioblastomas was very weak or non-existent in 86.7% of samples, moderate in 13.3%, while strong expression was not observed. The increase in astrocytoma grade resulted in SFRP4 protein decrease (p = 0.008), indicating the loss of its antagonistic role in Wnt signaling. Promoter methylation of SFRP4 gene was found in 16.3% of cases. Astrocytomas grade 2 had significantly more methylated cases compared to grade 3 astrocytomas (p = 0.004) and glioblastomas (p < 0.001), which may indicate temporal niche of methylation in grade 2. Furthermore, the expression levels of SFRP4 were high in samples with methylated SFRP4 promoter and low or missing in unmethylated cases (Pearson's R = -0.413; p = 0.003). We also investigated the association of SFRP4 changes to key Wnt regulators GSK3ß and DKK3 and established a positive correlation between methylations of SFRP4 and GSK3ß (Pearson's R = 0.323; p = 0.03). Furthermore, SFRP4 expression was correlated to unmethylated DKK3 (Chi square = 7.254; p = 0.027) indication that Wnt signaling antagonist is associated to negative regulator's demethylation. Conclusion: The study contributes to the recognition of the significance of epigenetic changes in diffuse glioma indicating that restoring SFRP4 protein holds potential as therapeutic avenue. Reduced expression of SFRP4 in glioblastomas, not following promoter methylation pattern, suggests another mechanism, possible global methylation, that turns off SFRP4 expression in higher grades.

17.
Croat Med J ; 53(4): 321-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22911524

RESUMO

AIM: To identify gross deletions in the NF2 gene in a panel of schwannomas from Croatian patients in order to establish their frequencies in Croatian population. METHODS: Changes of the NF2 gene were tested by polymerase chain reaction/loss of heterozygosity (LOH) using two microsatellite markers, D22S444 and D22S929. RESULTS: The analysis with both markers demonstrated that 43.75% of schwannomas exhibited LOH of the NF2 gene. The D22S444 region exhibited 45.5% of LOHs and the D22S929 region exhibited 14.3% of LOHs. Four LOHs were found in Antoni B, 2 in Antoni A, and 1 in Antoni A and B type tumors. CONCLUSION: The frequency of changes observed in Croatian patients is broadly similar to that reported in other populations and thus confirms the existing hypothesis regarding the tumorigenesis of schwannomas and contributes to schwannoma genetic profile helping us to better understand its etiology and treatment.


Assuntos
Genes da Neurofibromatose 2 , Perda de Heterozigosidade , Neoplasias do Sistema Nervoso/genética , Neurilemoma/genética , Adolescente , Adulto , Idoso , Criança , Croácia , Feminino , Frequência do Gene , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias do Sistema Nervoso/patologia , Neurilemoma/patologia , Adulto Jovem
18.
Coll Antropol ; 35 Suppl 1: 101-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21648318

RESUMO

The etiology and pathogenesis of tumors of the central nervous system are still inadequately explained. In the present study the expression patterns of a critical molecular component of wnt signaling pathway - axin I was investigated in 42 patients with glioblastoma, the most aggressive form of glial tumors. Immunostaining and image analysis revealed the quantity and localization of the protein. Downregulation of this tumor suppressor expression was observed in 31% of tumors when compared to the levels of axin in healthy brain tissues. Axin was observed in the cytoplasm in 69% of glioblastoma samples, in 21.4% in both the cytoplasm and nucleus and 9.5% had expression solely in the nucleus. Mean values of relative axin's expression obtained by image analysis showed that the highest relative quantity of axin was measured when the protein was in the nucleus and the lowest relative quantity of axin when the protein was localized in the cytoplasm. Investigation on axin's existence at the subcellular level in glioblastomas suggests that axin's expression and spatial regulation is a dynamic process. Despite increasing knowledge on glioma biology and genetics, the prognostic tools for glioblastoma still need improvement. Our findings on expression of axin 1 may contribute to better understanding of glioblastoma molecular profile.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glioblastoma/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína Axina , Química Encefálica , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Proteínas Repressoras/biossíntese
19.
Cancers (Basel) ; 13(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209611

RESUMO

Diffuse gliomas are a heterogeneous group of tumors with aggressive biological behavior and a lack of effective treatment methods. Despite new molecular findings, the differences between pathohistological types still require better understanding. In this in silico analysis, we investigated AKT1, AKT2, AKT3, CHUK, GSK3ß, EGFR, PTEN, and PIK3AP1 as participants of EGFR-PI3K-AKT-mTOR signaling using data from the publicly available cBioPortal platform. Integrative large-scale analyses investigated changes in copy number aberrations (CNA), methylation, mRNA transcription and protein expression within 751 samples of diffuse astrocytomas, anaplastic astrocytomas and glioblastomas. The study showed a significant percentage of CNA in PTEN (76%), PIK3AP1 and CHUK (75% each), EGFR (74%), AKT2 (39%), AKT1 (32%), AKT3 (19%) and GSK3ß (18%) in the total sample. Comprehensive statistical analyses show how genomics and epigenomics affect the expression of examined genes differently across various pathohistological types and grades, suggesting that genes AKT3, CHUK and PTEN behave like tumor suppressors, while AKT1, AKT2, EGFR, and PIK3AP1 show oncogenic behavior and are involved in enhanced activity of the EGFR-PI3K-AKT-mTOR signaling pathway. Our findings contribute to the knowledge of the molecular differences between pathohistological types and ultimately offer the possibility of new treatment targets and personalized therapies in patients with diffuse gliomas.

20.
Cancers (Basel) ; 13(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915799

RESUMO

Epithelial to mesenchymal transition (EMT), which is characterized by the reduced expression of E-cadherin and increased expression of N-cadherin, plays an important role in the tumor invasion and metastasis. Classical Wnt signaling pathway has a tight link with EMT and it has been shown that nuclear translocation of ß-catenin can induce EMT. This research has showed that genes that are involved in cadherin switch, CDH1 and CDH2, play a role in meningioma progression. Increased N-cadherin expression in relation to E-cadherin was recorded. In meningioma, transcription factors SNAIL, SLUG, and TWIST1 demonstrated strong expression in relation to E- and N-cadherin. The expression of SNAIL and SLUG was significantly associated with higher grades (p = 0.001), indicating their role in meningioma progression. Higher grades also recorded an increased expression of total ß-catenin followed by an increased expression of its active form (p = 0.000). This research brings the results of genetic and protein analyzes of important molecules that are involved in Wnt and EMT signaling pathways and reveals their role in intracranial meningioma. The results of this study offer guidelines and new markers of progression for future research and reveal new molecular targets of therapeutic interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA