Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2938, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36806250

RESUMO

In recent years, the report of loggerhead sea turtle (Caretta caretta) Mediterranean nesting range has expanded together with new records of nests becoming northward on the Italian coastline of the Tyrrhenian and Adriatic seas. These areas are characterized by intensive human activities, such as tourism, fishery, and marine traffic, all possibly involved in the influence of the use of coastal habitat by marine species. These anthropic threats, in addition to the natural ones and the changing environmental characteristics of the beach, may influence the growth of microorganisms causing hatching failures. Among microorganisms, fungal infection by the genus Fusarium (Link, 1809) is considered one of the main causes of globally declining sea turtle populations. In summer 2021, the two northernmost worldwide loggerhead sea turtle nests were monitored along the Northern Adriatic coastline (Veneto, Italy). These first records may potentially candidate this area as suitable for a large part of the loggerhead turtle's life cycle and it could represent a minor sea turtle nesting area that, according to Prato and colleagues, remained unnoticed due to the lack of specific monitoring. Sea Turtle Egg Fusariosis (STEF) was deemed to have deeply compromised the hatching success of the northmost one. Climate change and anthropogenic impacts have been scored as one of the highest hazards to sea turtle health and could have played a role in the STEF development. Environmental changes, human activities, and emerging pathogens deserve the highest attention in terms of health research, and conservation management.


Assuntos
Fusariose , Tartarugas , Humanos , Feminino , Animais , Gravidez , Parto , Efeitos Antropogênicos , Mudança Climática , Tratamento Conservador
3.
PLoS One ; 15(7): e0235537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32614926

RESUMO

Recent studies describe the use of UAVs in collecting blow samples from large whales to analyze the microbial and viral community in exhaled air. Unfortunately, attempts to collect blow from small cetaceans have not been successful due to their swimming and diving behavior. In order to overcome these limitations, in this study we investigated the application of a specific sampling tool attached to a UAV to analyze the blow from small cetaceans and their respiratory microbiome. Preliminary trials to set up the sampling tool were conducted on a group of 6 bottlenose dolphins (Tursiops truncatus) under human care, housed at Acquario di Genova, with approximately 1 meter distance between the blowing animal and the tool to obtain suitable samples. The same sampling kit, suspended via a 2 meter rope assembled on a waterproof UAV, flying 3 meters above the animals, was used to sample the blows of 5 wild bottlenose dolphins in the Gulf of Ambracia (Greece) and a sperm whale (Physeter macrocephalus) in the southern Tyrrhenian Sea (Italy), to investigate whether this experimental assembly also works for large whale sampling. In order to distinguish between blow-associated microbes and seawater microbes, we pooled 5 seawater samples from the same area where blow samples' collection were carried out. The the respiratory microbiota was assessed by using the V3-V4 region of the 16S rRNA gene via Illumina Amplicon Sequencing. The pooled water samples contained more bacterial taxa than the blow samples of both wild animals and the sequenced dolphin maintained under human care. The composition of the bacterial community differed between the water samples and between the blow samples of wild cetaceans and that under human care, but these differences may have been mediated by different microbial communities between seawater and aquarium water. The sperm whale's respiratory microbiome was more similar to the results obtained from wild bottlenose dolphins. Although the number of samples used in this study was limited and sampling and analyses were impaired by several limitations, the results are rather encouraging, as shown by the evident microbial differences between seawater and blow samples, confirmed also by the meta-analysis carried out comparing our results with those obtained in previous studies. Collecting exhaled air from small cetaceans using drones is a challenging process, both logistically and technically. The success in obtaining samples from small cetacean blow in this study in comparison to previous studies is likely due to the distance the sampling kit is suspended from the drone, which reduced the likelihood that the turbulence of the drone propeller interfered with successfully sampling blow, suggested as a factor leading to poor success in previous studies.


Assuntos
Cetáceos/microbiologia , Microbiota , Sistema Respiratório/microbiologia , Aeronaves , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Golfinho Nariz-de-Garrafa/microbiologia , Análise por Conglomerados , Análise de Componente Principal , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Robótica , Baleias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA