Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 44(7): 1391-1403, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36697976

RESUMO

The inflammatory responses involving infiltration and activation of liver macrophages play a vital role in acute liver failure (ALF). In the liver of ALF mice, cannabinoid receptor 2 (CB2R) is significantly upregulated on macrophages, while CB2R agonist GW405833 (GW) could protect against cell death in acute liver damage. In this study, we investigated the molecular mechanisms underlying the protective effects of GW against ALF in vivo and in vitro from a perspective of macrophage glycometabolism. Mice were pretreated with GW (10 mg/kg, i.p.), then were injected with D-GalN (750 mg/kg, i.p.) and LPS (10 mg/kg, i.p.) to induce ALF. We verified the protective effects of GW pretreatment in ALF mice. Furthermore, GW pretreatment significantly reduced liver macrophage infiltration and M1 polarization, and inhibited the release of inflammatory factors TNF-α and IL-1ß in ALF mice. These protective effects were eliminated by CB2R antagonist SR144528 or in CB2R-/- ALF mice. We used LPS-stimulated RAW264.7 cells as an in vitro M1 macrophage-centered model of inflammatory response, and demonstrated that pretreatment with GW (10 µM) significantly reduced glucose metabolism by inhibiting glycolysis, which inhibited LPS-induced macrophage proliferation and inflammatory cytokines release. We verified these results in a stable CB2R-/- RAW264.7 cell line. Moreover, we found that GW significantly inhibited the expression of hypoxia inducible factor 1α (HIF-1α). Using a stable HIF-1α-/- RAW264.7 cell line, we confirmed that GW reduced the release of inflammatory cytokines from macrophages and inhibited glycolysis by downregulating HIF-1α expression. In conclusion, activation of CB2Rs inhibits the proliferation of hepatic macrophages and release of inflammatory factors in ALF mice through downregulating HIF-1α to inhibit glycolysis.


Assuntos
Lipopolissacarídeos , Falência Hepática Aguda , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/tratamento farmacológico , Macrófagos , Citocinas/metabolismo , Proliferação de Células , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
2.
Acta Pharmacol Sin ; 42(8): 1256-1266, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32939034

RESUMO

Acute liver failure (ALF) is a fatal clinical syndrome with no special drug. Recent evidence shows that modulation of macrophage to inhibit inflammation may be a promising strategy for ALF treatment. In this study we investigated the potential therapeutic effects of melittin, a major peptide component of bee venom both in mice model of ALF and in LPS-stimulated macrophages in vitro, and elucidated the underlying mechanisms. ALF was induced in mice by intraperitoneal injection of D-galactosamine/LPS. Then the mice were treated with melittin (2, 4, and 8 mg/kg, ip). We showed that melittin treatment markedly improved mortality, attenuated severe symptoms and signs, and alleviated hepatic inflammation in D-galactosamine/LPS-induced ALF mice with the optimal dose being 4 mg/kg. In addition, melittin within the effective doses did not cause significant in vivo toxicity. In LPS-stimulated RAW264.7 macrophages, melittin (0.7 µM) exerted anti-oxidation and anti-inflammation effects. We showed that LPS stimulation promoted aerobic glycolysis of macrophages through increasing glycolytic rate, upregulated the levels of Warburg effect-related enzymes and metabolites including lactate, LDHA, LDH, and GLUT-1, and activated Akt/mTOR/PKM2/HIF-1α signaling. Melittin treatment suppressed M2 isoform of pyruvate kinase (PKM2), thus disrupted the Warburg effect to alleviate inflammation. Molecular docking analysis confirmed that melittin targeted PKM2. In LPS-stimulated RAW264.7 macrophages, knockdown of PKM2 caused similar anti-inflammation effects as melittin did. In D-galactosamine/LPS-induced ALF mice, melittin treatment markedly decreased the expression levels of PKM2 and HIF-1α in liver. This work demonstrates that melittin inhibits macrophage activation-mediated inflammation via inhibition of aerobic glycolysis by targeting PKM2, which highlights a novel strategy of using melittin for ALF treatment.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Glicólise/efeitos dos fármacos , Falência Hepática Aguda/tratamento farmacológico , Meliteno/uso terapêutico , Piruvato Quinase/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/toxicidade , Antioxidantes/metabolismo , Antioxidantes/toxicidade , Galactosamina , Inflamação/tratamento farmacológico , Inflamação/etiologia , Lipopolissacarídeos , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/complicações , Masculino , Meliteno/metabolismo , Meliteno/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Ligação Proteica , Células RAW 264.7
3.
Transfus Apher Sci ; 60(1): 102930, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32933846

RESUMO

Liver-targeted cargo delivery possesses great potential for the treatment of liver disease. It is urgent to find an efficient and biocompatible liver targeted delivery system. This study focused on the liver targeting properties of erythrocyte ghosts and its possible mechanism. Herein, we optimized conditions to fabricate human and mouse erythrocyte ghosts with sufficient room capable of incorporating various model substances. Erythrocyte ghosts are biocompatible cargo carriers because it is derived from autologous red blood cells (RBCs), and the cell size, zeta potential, and biconcave-disk shape of the ghosts were consistent with those of RBCs. An in vivo imaging system and positron emission tomography/computed tomography imaging showed that the ghosts were captured mainly in the liver by intravenous injection of fluorescence or 18F-fluorodeoxyglucose (FDG)-labelled ghosts into mice. In contrast, the main concentration of naked octreotide was trapped in the lungs while naked 18F-FDG was trapped in the heart. However, the concentration of cargo-loaded ghosts decreased significantly in the liver in macrophage-depleted mice. Accordingly, in vitro experiments showed that higher phosphatidylserine exposure was observed in the ghosts (38.9 %) compared to normal erythrocytes (0.69 %), and the phagocytic activity of the macrophage RAW 264.7. on the ghosts was significantly higher than that of normal erythrocytes (p < 0.001). Together they indicate that erythrocyte ghosts show liver targeting properties, and possibly owing to macrophage phagocytosis. This promising and effective therapeutic delivery system may provide therapeutic benefits for liver disease.


Assuntos
Contagem de Eritrócitos/métodos , Macrófagos/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA