Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(23): 4386-4397.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37995686

RESUMO

The multi-pass transmembrane protein ACCELERATED CELL DEATH 6 (ACD6) is an immune regulator in Arabidopsis thaliana with an unclear biochemical mode of action. We have identified two loci, MODULATOR OF HYPERACTIVE ACD6 1 (MHA1) and its paralog MHA1-LIKE (MHA1L), that code for ∼7 kDa proteins, which differentially interact with specific ACD6 variants. MHA1L enhances the accumulation of an ACD6 complex, thereby increasing the activity of the ACD6 standard allele for regulating plant growth and defenses. The intracellular ankyrin repeats of ACD6 are structurally similar to those found in mammalian ion channels. Several lines of evidence link increased ACD6 activity to enhanced calcium influx, with MHA1L as a direct regulator of ACD6, indicating that peptide-regulated ion channels are not restricted to animals.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Anquirinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Canais Iônicos/genética , Canais Iônicos/metabolismo , Imunidade Vegetal/genética
2.
Nature ; 629(8014): 1118-1125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778102

RESUMO

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.


Assuntos
Arabidopsis , Sinalização do Cálcio , Cálcio , Germinação , Concentração Osmolar , Pólen , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Germinação/genética , Mutação , Pólen/genética , Pólen/metabolismo , Água/metabolismo , Células HEK293 , Humanos , Desidratação
3.
Nature ; 578(7796): 577-581, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32076270

RESUMO

Hydrogen peroxide (H2O2) is a major reactive oxygen species in unicellular and multicellular organisms, and is produced extracellularly in response to external stresses and internal cues1-4. H2O2 enters cells through aquaporin membrane proteins and covalently modifies cytoplasmic proteins to regulate signalling and cellular processes. However, whether sensors for H2O2 also exist on the cell surface remains unknown. In plant cells, H2O2 triggers an influx of Ca2+ ions, which is thought to be involved in H2O2 sensing and signalling. Here, by using forward genetic screens based on Ca2+ imaging, we isolated hydrogen-peroxide-induced Ca2+ increases (hpca) mutants in Arabidopsis, and identified HPCA1 as a leucine-rich-repeat receptor kinase belonging to a previously uncharacterized subfamily that features two extra pairs of cysteine residues in the extracellular domain. HPCA1 is localized to the plasma membrane and is activated by H2O2 via covalent modification of extracellular cysteine residues, which leads to autophosphorylation of HPCA1. HPCA1 mediates H2O2-induced activation of Ca2+ channels in guard cells and is required for stomatal closure. Our findings help to identify how the perception of extracellular H2O2 is integrated with responses to various external stresses and internal cues in plants, and have implications for the design of crops with enhanced fitness.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Peróxido de Hidrogênio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cisteína/química , Cisteína/metabolismo , Ativação Enzimática , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação , Oxirredução , Células Vegetais/metabolismo , Domínios Proteicos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética
4.
Nature ; 572(7769): 341-346, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31367039

RESUMO

Salinity is detrimental to plant growth, crop production and food security worldwide. Excess salt triggers increases in cytosolic Ca2+ concentration, which activate Ca2+-binding proteins and upregulate the Na+/H+ antiporter in order to remove Na+. Salt-induced increases in Ca2+ have long been thought to be involved in the detection of salt stress, but the molecular components of the sensing machinery remain unknown. Here, using Ca2+-imaging-based forward genetic screens, we isolated the Arabidopsis thaliana mutant monocation-induced [Ca2+]i increases 1 (moca1), and identified MOCA1 as a glucuronosyltransferase for glycosyl inositol phosphorylceramide (GIPC) sphingolipids in the plasma membrane. MOCA1 is required for salt-induced depolarization of the cell-surface potential, Ca2+ spikes and waves, Na+/H+ antiporter activation, and regulation of growth. Na+ binds to GIPCs to gate Ca2+ influx channels. This salt-sensing mechanism might imply that plasma-membrane lipids are involved in adaption to various environmental salt levels, and could be used to improve salt resistance in crops.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Glicoesfingolipídeos/metabolismo , Células Vegetais/metabolismo , Cloreto de Sódio/metabolismo , Arabidopsis/genética , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Mutação , Estresse Salino/genética , Estresse Salino/fisiologia , Cloreto de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/metabolismo
5.
New Phytol ; 235(4): 1665-1678, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35527515

RESUMO

Genetic mutants defective in stimulus-induced Ca2+ increases have been gradually isolated, allowing the identification of cell-surface sensors/receptors, such as the osmosensor OSCA1. However, determining the Ca2+ -signaling specificity to various stimuli in these mutants remains a challenge. For instance, less is known about the exact selectivity between osmotic and ionic stresses in the osca1 mutant. Here, we have developed a method to distinguish the osmotic and ionic effects by analyzing Ca2+ increases, and demonstrated that osca1 is impaired primarily in Ca2+ increases induced by the osmotic but not ionic stress. We recorded Ca2+ increases induced by sorbitol (osmotic effect, OE) and NaCl/CaCl2 (OE + ionic effect, IE) in Arabidopsis wild-type and osca1 seedlings. We assumed the NaCl/CaCl2 total effect (TE) = OE + IE, then developed procedures for Ca2+ imaging, image analysis and mathematic fitting/modeling, and found osca1 defects mainly in OE. The osmotic specificity of osca1 suggests that osmotic and ionic perceptions are independent. The precise estimation of these two stress effects is applicable not only to new Ca2+ -signaling mutants with distinct stimulus specificity but also the complex Ca2+ signaling crosstalk among multiple concurrent stresses that occur naturally, and will enable us to specifically fine tune multiple signal pathways to improve crop yields.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Cloreto de Cálcio/farmacologia , Pressão Osmótica , Percepção , Cloreto de Sódio/farmacologia
6.
Int J Mol Sci ; 23(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36142482

RESUMO

Since we discovered OSCA1, a hyperosmolarity-gated calcium-permeable channel that acted as an osmosensor in Arabidopsis, the OSCA family has been identified genome-wide in several crops, but only a few OSCA members' functions have been experimentally demonstrated. Osmotic stress seriously restricts the yield and quality of soybean. Therefore, it is essential to decipher the molecular mechanism of how soybean responds to osmotic stress. Here, we first systematically studied and experimentally demonstrated the role of OSCA family members in the osmotic sensing of soybean. Phylogenetic relationships, gene structures, protein domains and structures analysis revealed that 20 GmOSCA members were divided into four clades, of which members in the same cluster may have more similar functions. In addition, GmOSCA members in clusters III and IV may be functionally redundant and diverged from those in clusters I and II. Based on the spatiotemporal expression patterns, GmOSCA1.6, GmOSCA2.1, GmOSCA2.6, and GmOSCA4.1 were extremely low expressed or possible pseudogenes. The remaining 16 GmOSCA genes were heterologously overexpressed in an Arabidopsis osca1 mutant, to explore their functions. Subcellular localization showed that most GmOSCA members could localize to the plasma membrane (PM). Among 16 GmOSCA genes, only overexpressing GmOSCA1.1, GmOSCA1.2, GmOSCA1.3, GmOSCA1.4, and GmOSCA1.5 in cluster I could fully complement the reduced hyperosmolality-induced [Ca2+]i increase (OICI) in osca1. The expression profiles of GmOSCA genes against osmotic stress demonstrated that most GmOSCA genes, especially GmOSCA1.1, GmOSCA1.2, GmOSCA1.3, GmOSCA1.4, GmOSCA1.5, GmOSCA3.1, and GmOSCA3.2, strongly responded to osmotic stress. Moreover, overexpression of GmOSCA1.1, GmOSCA1.2, GmOSCA1.3, GmOSCA1.4, GmOSCA1.5, GmOSCA3.1, and GmOSCA3.2 rescued the drought-hypersensitive phenotype of osca1. Our findings provide important clues for further studies of GmOSCA-mediated calcium signaling in the osmotic sensing of soybean and contribute to improving soybean drought tolerance through genetic engineering and molecular breeding.


Assuntos
Arabidopsis , Fabaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Cálcio/metabolismo , Secas , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Filogenia , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Estresse Fisiológico/genética
7.
Plant Cell Environ ; 44(12): 3563-3575, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536020

RESUMO

The flagellin epitope flg22, a pathogen-associated molecular pattern (PAMP), binds to the receptor-like kinase FLAGELLIN SENSING2 (FLS2), and triggers Ca2+ influx across the plasma membrane (PM). The flg22-induced increases in cytosolic Ca2+ concentration ([Ca2+ ]i ) (FICA) play a crucial role in plant innate immunity. It's well established that the receptor FLS2 and reactive oxygen species (ROS) burst undergo sensitivity adaptation after flg22 stimulation, referred to as desensitization and resensitization, to prevent over responses to pathogens. However, whether FICA also mount adaptation mechanisms to ensure appropriate and efficient responses against pathogens remains poorly understood. Here, we analysed systematically [Ca2+ ]i increases upon two successive flg22 treatments, recorded and characterized rapid desensitization but slow resensitization of FICA in Arabidopsis thaliana. Pharmacological analyses showed that the rapid desensitization might be synergistically regulated by ligand-induced FLS2 endocytosis as well as the PM depolarization. The resensitization of FICA might require de novo FLS2 protein synthesis. FICA resensitization appeared significantly slower than FLS2 protein recovery, suggesting additional regulatory mechanisms of other components, such as flg22-related Ca2+ permeable channels. Taken together, we have carefully defined the FICA sensitivity adaptation, which will facilitate further molecular and genetic dissection of the Ca2+ -mediated adaptive mechanisms in PAMP-triggered immunity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cálcio/metabolismo , Endocitose/genética , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ligantes , Proteínas Quinases/metabolismo
8.
Nature ; 514(7522): 367-71, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25162526

RESUMO

Water is crucial to plant growth and development. Environmental water deficiency triggers an osmotic stress signalling cascade, which induces short-term cellular responses to reduce water loss and long-term responses to remodel the transcriptional network and physiological and developmental processes. Several signalling components that have been identified by extensive genetic screens for altered sensitivities to osmotic stress seem to function downstream of the perception of osmotic stress. It is known that hyperosmolality and various other stimuli trigger increases in cytosolic free calcium concentration ([Ca(2+)]i). Considering that in bacteria and animals osmosensing Ca(2+) channels serve as osmosensors, hyperosmolality-induced [Ca(2+)]i increases have been widely speculated to be involved in osmosensing in plants. However, the molecular nature of corresponding Ca(2+) channels remain unclear. Here we describe a hyperosmolality-gated calcium-permeable channel and its function in osmosensing in plants. Using calcium-imaging-based unbiased forward genetic screens we isolated Arabidopsis mutants that exhibit low hyperosmolality-induced [Ca(2+)]i increases. These mutants were rescreened for their cellular, physiological and developmental responses to osmotic stress, and those with clear combined phenotypes were selected for further physical mapping. One of the mutants, reduced hyperosmolality-induced [Ca(2+)]i increase 1 (osca1), displays impaired osmotic Ca(2+) signalling in guard cells and root cells, and attenuated water transpiration regulation and root growth in response to osmotic stress. OSCA1 is identified as a previously unknown plasma membrane protein and forms hyperosmolality-gated calcium-permeable channels, revealing that OSCA1 may be an osmosensor. OSCA1 represents a channel responsible for [Ca(2+)]i increases induced by a stimulus in plants, opening up new avenues for studying Ca(2+) machineries for other stimuli and providing potential molecular genetic targets for engineering drought-resistant crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Pressão Osmótica , Água/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Canais de Cálcio/genética , Membrana Celular/metabolismo , Citoplasma/metabolismo , Secas , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transpiração Vegetal
9.
Cell Mol Biol (Noisy-le-grand) ; 64(7): 36-42, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29974844

RESUMO

Heatstroke is still a potentially fatal threat during summer heat waves, despite improved prevention and treatment. It is reported that the transient receptor potential vanilloid 4 (TRPV4) inhibitor may protect septicemia mice. Many aspects of heatstroke have been defined, from the sepsis-mimic inflammatory response to hyperthermia. Hence, TRPV4 may be a therapeutic target for heatstroke. The results in murine models of heatstroke verified that GSK2193874, as a selected TRPV4 inhibitor, was injected at heatstroke onset, and then reduced the reduction of core temperature, the death rate, wet/dry ratio of the lung, levels of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, coagulation indicators, the degree of organ injury, and caspase-3/7 activity (P<0.05). But GSK2193874 treatment before heat stress did not improve the symptoms of heatstroke mice. Therefore, TRPV4 should be involved in heatstroke-induced injury. Timely GSK2193874 administration may be useful to reduce heatstroke-induced injury. TRPV4 may be a potential new therapeutic target in fatal heatstroke.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Golpe de Calor/tratamento farmacológico , Piperidinas/farmacologia , Edema Pulmonar/tratamento farmacológico , Quinolinas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Anti-Inflamatórios/uso terapêutico , Caspase 3/metabolismo , Caspase 7/metabolismo , Modelos Animais de Doenças , Golpe de Calor/complicações , Golpe de Calor/patologia , Temperatura Alta/efeitos adversos , Interleucina-6/sangue , Interleucina-6/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas/uso terapêutico , Edema Pulmonar/etiologia , Edema Pulmonar/patologia , Quinolinas/uso terapêutico , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia
10.
Cell Mol Biol (Noisy-le-grand) ; 64(7): 80-85, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29974850

RESUMO

Therapeutic target transient receptor potential vanilloid-4 (TRPV-4) is frequently applied in endotoxemia research. It has been reported that HC067047, an inhibitor of TRPV-4, mitigated LPS-induced injury. However, the inhibition of TRPV-4 with HC06047 did not attenuate LPS-induced symptoms and exaggerated pathology. This study was carried with a view to unravelling the reason(s) behind these conflicting results. Different doses of the inhibitor were used in the same degree of sepsis, and their effects were determined through assays for sepsis-related physiological indicators such as endothelial injury markers, coagulation index, organ damage indicators, inflammatory factor levels, and cell apoptosis. The results showed that high or low inhibitor levels had no significant effect on sepsis-related physiological indicators. These findings suggest that proper activation of TRPV-4 in sepsis is important for maintaining normal physiological function. Thus, the degree of TRPV-4 activation should match the severity of sepsis.


Assuntos
Apoptose/efeitos dos fármacos , Citoproteção , Sepse/tratamento farmacológico , Canais de Cátion TRPV/agonistas , Animais , Biomarcadores/sangue , Coagulação Sanguínea/efeitos dos fármacos , Caspase 3/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Pirróis/administração & dosagem , Pirróis/farmacologia , Sepse/induzido quimicamente , Canais de Cátion TRPV/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
11.
Nucleic Acids Res ; 42(13): 8243-57, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24981511

RESUMO

Cyclic GMP-AMP (cGAMP) synthase (cGAS) is recently identified as a cytosolic DNA sensor and generates a non-canonical cGAMP that contains G(2',5')pA and A(3',5')pG phosphodiester linkages. cGAMP activates STING which triggers innate immune responses in mammals. However, the evolutionary functions and origins of cGAS and STING remain largely elusive. Here, we carried out comprehensive evolutionary analyses of the cGAS-STING pathway. Phylogenetic analysis of cGAS and STING families showed that their origins could be traced back to a choanoflagellate Monosiga brevicollis. Modern cGAS and STING may have acquired structural features, including zinc-ribbon domain and critical amino acid residues for DNA binding in cGAS as well as carboxy terminal tail domain for transducing signals in STING, only recently in vertebrates. In invertebrates, cGAS homologs may not act as DNA sensors. Both proteins cooperate extensively, have similar evolutionary characteristics, and thus may have co-evolved during metazoan evolution. cGAS homologs and a prokaryotic dinucleotide cyclase for canonical cGAMP share conserved secondary structures and catalytic residues. Therefore, non-mammalian cGAS may function as a nucleotidyltransferase and could produce cGAMP and other cyclic dinucleotides. Taken together, assembling signaling components of the cGAS-STING pathway onto the eukaryotic evolutionary map illuminates the functions and origins of this innate immune pathway.


Assuntos
Evolução Molecular , Proteínas de Membrana/química , Nucleotidiltransferases/química , Animais , Coanoflagelados/genética , Proteínas de Ligação a DNA/química , Humanos , Proteínas de Membrana/classificação , Camundongos , Nematoides/genética , Nucleotidiltransferases/classificação , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 110(4): 1548-53, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23319631

RESUMO

Maintaining nitric oxide (NO) homeostasis is essential for normal plant physiological processes. However, very little is known about the mechanisms of NO modulation in plants. Here, we report a unique mechanism for the catabolism of NO based on the reaction with the plant hormone cytokinin. We screened for NO-insensitive mutants in Arabidopsis and isolated two allelic lines, cnu1-1 and 1-2 (continuous NO-unstressed 1), that were identified as the previously reported altered meristem program 1 (amp1) and as having elevated levels of cytokinins. A double mutant of cnu1-2 and nitric oxide overexpression 1 (nox1) reduced the severity of the phenotypes ascribed to excess NO levels as did treating the nox1 line with trans-zeatin, the predominant form of cytokinin in Arabidopsis. We further showed that peroxinitrite, an active NO derivative, can react with zeatin in vitro, which together with the results in vivo suggests that cytokinins suppress the action of NO most likely through direct interaction between them, leading to the reduction of endogenous NO levels. These results provide insights into NO signaling and regulation of its bioactivity in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Óxido Nítrico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Citocininas/química , Citocininas/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Genes de Plantas , Mutação , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Ácido Peroxinitroso/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Zeatina/metabolismo , Zeatina/farmacologia
13.
BMC Plant Biol ; 15: 261, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26503287

RESUMO

BACKGROUND: Reception of and response to exogenous and endogenous osmotic changes is important to sustain plant growth and development, as well as reproductive formation. Hyperosmolality-gated calcium-permeable channels (OSCA) were first characterised as an osmosensor in Arabidopsis and are involved in the perception of extracellular changes to trigger hyperosmolality-induced [Ca(2+)]i increases (OICI). To explore the potential biological functions of OSCAs in rice, we performed a bioinformatics and expression analysis of the OsOSCA gene family. RESULTS: A total of 11 OsOSCA genes were identified from the genome database of Oryza sativa L. Japonica. Based on their sequence composition and phylogenetic relationship, the OsOSCA family was classified into four clades. Gene and protein structure analysis indicated that the 11 OsOSCAs shared similar structures with their homologs in Oryza sativa L. ssp. Indica, Oryza glaberrima, and Oryza brachyantha. Multiple sequence alignment analysis revealed a conserved DUF221 domain in these members, in which the first three TMs were conserved, while the others were not. The expression profiles of OsOSCA genes were analysed at different stages of vegetative growth, reproductive development, and under osmotic-associated abiotic stresses. We found that four and six OsOSCA genes showed a clear correlation between the expression profile and osmotic changes during caryopsis development and seed imbibition, respectively. Orchestrated transcription of three OsOSCAs was strongly associated with the circadian clock. Moreover, osmotic-related abiotic stress differentially induced the expression of 10 genes. CONCLUSION: The entire OSCA family is characterised by the presence of a conserved DUF221 domain, which functions as an osmotic-sensing calcium channel. The phylogenetic tree of OSCA genes showed that two subspecies of cultivated rice, Oryza sativa L. ssp. Japonica and Oryza sativa L. ssp. Indica, are more closely related than wild rice Oryza glaberrima, while Oryza brachyantha was less closely related. OsOSCA expression is organ- and tissue-specific and regulated by different osmotic-related abiotic stresses in rice. These findings will facilitate further research in this gene family and provide potential target genes for generation of genetically modified osmotic-stress-resistant plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Família Multigênica , Oryza/genética , Sequência de Aminoácidos , Relógios Circadianos/genética , Sequência Conservada , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Osmose/efeitos dos fármacos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Sementes/genética , Sementes/fisiologia , Alinhamento de Sequência , Estresse Fisiológico , Transcrição Gênica
14.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38370744

RESUMO

The calcium-activated TMEM16 proteins and the mechanosensitive/osmolarity-activated OSCA/TMEM63 proteins belong to the Transmembrane Channel/Scramblase (TCS) superfamily. Within the superfamily, OSCA/TMEM63 proteins, as well as TMEM16A and TMEM16B, likely function solely as ion channels. However, the remaining TMEM16 members, including TMEM16F, maintain an additional function as scramblases, rapidly exchanging phospholipids between leaflets of the membrane. Although recent studies have advanced our understanding of TCS structure-function relationships, the molecular determinants of TCS ion and lipid permeation remain unclear. Here we show that single lysine mutations in transmembrane helix (TM) 4 allow non-scrambling TCS members to permeate phospholipids. This study highlights the key role of TM 4 in controlling TCS ion and lipid permeation and offers novel insights into the evolution of the TCS superfamily, suggesting that, like TMEM16s, the OSCA/TMEM63 family maintains a conserved potential to permeate ions and phospholipids.

15.
Plants (Basel) ; 12(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37765358

RESUMO

Stomatal closure is a vital, adaptive mechanism that plants utilize to minimize water loss and withstand drought conditions. We will briefly review the pathway triggered by drought that governs stomatal closure, with specific focuses on salicylic acid (SA) and reactive oxygen species (ROS). We propose that the non-expressor of PR Gene 1 (NPR1), a protein that protects plants during pathogen infections, also responds to SA during drought to sustain ROS levels and prevent ROS-induced cell death. We will examine the evidence underpinning this hypothesis and discuss potential strategies for its practical implementation.

17.
J Exp Bot ; 63(1): 177-90, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21940718

RESUMO

The Arabidopsis calcium-sensing receptor CAS is a crucial regulator of extracellular calcium-induced stomatal closure. Free cytosolic Ca(2+) (Ca(2+)(i)) increases in response to a high extracellular calcium (Ca(2+)(o)) level through a CAS signalling pathway and finally leads to stomatal closure. Multidisciplinary approaches including histochemical, pharmacological, fluorescent, electrochemical, and molecular biological methods were used to discuss the relationship of hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) signalling in the CAS signalling pathway in guard cells in response to Ca(2+)(o). Here it is shown that Ca(2+)(o) could induce H(2)O(2) and NO production from guard cells but only H(2)O(2) from chloroplasts, leading to stomatal closure. In addition, the CASas mutant, the atrbohD/F double mutant, and the Atnoa1 mutant were all insensitive to Ca(2+)(o)-stimulated stomatal closure, as well as H(2)O(2) and NO elevation in the case of CASas. Furthermore, it was found that the antioxidant system might function as a mediator in Ca(2+)(o) and H(2)O(2) signalling in guard cells. The results suggest a hypothetical model whereby Ca(2+)(o) induces H(2)O(2) and NO accumulation in guard cells through the CAS signalling pathway, which further triggers Ca(2+)(i) transients and finally stomatal closure. The possible cross-talk of Ca(2+)(o) and abscisic acid signalling as well as the antioxidant system are discussed.


Assuntos
Arabidopsis/metabolismo , Cálcio/metabolismo , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Estômatos de Plantas/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Arabidopsis/citologia , Arabidopsis/enzimologia , Espaço Extracelular/metabolismo , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Espectrometria de Fluorescência
18.
Physiol Plant ; 144(1): 73-82, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21919914

RESUMO

As a second messenger, the free cytosolic calcium ion (Ca(2+)) plays important roles in many biochemical and physiological processes including photosynthesis in plants. In this study, we investigated morphological changes, chlorophyll accumulation and chloroplast development during early photomorphogenesis in etiolated seedlings of both Arabidopsis thaliana wild type (WT) and those with the antisense of CAS, a calcium sensor (CASas). Seedlings were grown at high, medium and low Ca(2+) concentrations to identify the roles of Ca(2+) and CAS in de-etiolation and chloroplast development. The results demonstrated that Ca(2+) and CAS are correlated with de-etiolation of A. thaliana after light exposure. High Ca(2+) significantly increased chlorophyll content and improved chloroplast development in both A. thaliana WT and CASas etiolated seedlings during de-etiolation. The analysis by western blot and real-time fluorescent quantitative polymerase chain reaction indicated that the expression levels of CAS mRNA and protein were upregulated by white light and external Ca(2+) significantly. Etiolated CASas plants showed much lower chlorophyll content and delay of chloroplast development as compared with WT plants, indicating that CAS functions in de-etiolation. All together, we concluded that the de-etiolation in A. thaliana was promoted by the high Ca(2+) concentration and CAS expression to a certain extent.


Assuntos
Arabidopsis/metabolismo , Cálcio/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Cloroplastos/fisiologia , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Morfogênese/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Caules de Planta/metabolismo , RNA Mensageiro/metabolismo , Receptores de Detecção de Cálcio/genética , Plântula/metabolismo
19.
Plant Genome ; 15(2): e20198, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35502648

RESUMO

Water is crucial to plant growth, development, and environmental adaptation. Water stress triggers cytosolic Ca2+ ([Ca2+ ]i ) increases, and the osmosensor OSCA1 (REDUCED-HYPEROSMOLALITY-INDUCED-[Ca2+ ]i -INCREASE 1), a member of the OSCA family, perceives the initial water stress and governs its downstream responses. OSCA homologs exist in eukaryotes and largely radiate in higher plants. However, it is enigmatic whether the OSCA family is crucial for plant evolution from aqueous to terrestrial environments and for the subsequent adaptation on land. Here, we carried out the first phylogenetic and molecular evolutionary analyses of the OSCA family. The family originated and diversified during the early evolution of protists, and three more lineages were established (a) in plants, (b) in fungi, and (c) in a complex clade of several major eukaryotic lineages. The chlorophyte algal cluster is directly basal to streptophyte-specific Clades 1-3, consistent with plant transition from water to land. The Clades 1-3 present different gene expansion pattern and together with previous functional analysis of OSCAs reveal that they probably have evolved diverse functions in respond to various mechanical stresses during the independent evolution of land plant clades. Moreover, variable selection pressures on different land plant lineages were explored. OSCAs in early land plants (mosses and lycophytes) were under decelerated evolution, whereas OSCAs in seed plants showed accelerated evolution. Together, we hypothesize OSCAs have evolved to sense water stress in the ancestor of euphyllophytes, which occupies typical leaves, typical roots, and phloem tissues, all of which require osmosensors to maintain water balance and food conduction through plant bodies.


Assuntos
Desidratação , Embriófitas , Embriófitas/genética , Evolução Molecular , Filogenia , Raízes de Plantas
20.
J Proteome Res ; 10(5): 2579-89, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21375354

RESUMO

A proteomic study using 2-D gel electrophoresis and MALDI-TOF MS was performed to characterize the responses of Arabidopsis thaliana plants to simulated acid rain (SiAR) stress, which is a global environmental problem and has become a serious issue in China in recent years. The emphasis of the present study was to investigate the overall protein expression changes when exposed to SiAR. Out of over 1000 protein spots reproducibly resolved, 50 of them changed their abundance by at least 2-fold. Analysis of protein expression patterns revealed that a set of proteins associated with energy production, metabolism, cell rescue, cell defense and protein folding, etc., could play important roles in mediating plant response to SiAR. In addition to this, some proteins involved in stress responses and jasmonic acid pathway are also involved in plant response to SiAR. More interestingly, the expression of several ubiquitination-related proteins changed dramatically after 32-h SiAR treatment, suggesting that they may act as a molecular marker for the injury phenotype caused by SiAR. Based on our results, we proposed a schematic model to explain the mechanisms associated with the systematic response of Arabidopsis plants to SiAR.


Assuntos
Chuva Ácida/toxicidade , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Redes e Vias Metabólicas/genética , Proteoma/efeitos dos fármacos , Proteômica/métodos , Análise de Variância , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila/análise , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteoma/metabolismo , RNA Ribossômico 18S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA