Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(45): 27976-27988, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36373742

RESUMO

Perovskite oxides of the general formula ABO3-δ, with A and B being metal cations, present themselves in various crystal structures that originate from a distorted ideal cubic perovskite. Understanding how composition, temperature, atmosphere and reduction extent of these non-stoichiometric redox materials induce structural changes on an atomic, as well as macroscopic, level is crucial to transfer newly developed materials to industrial scale applications in the redox-based energy conversion sector. Herein, Ca1-xSrxMnO3-δ (x ∈ [0,0.2]) and its micro- and macroscopic structural changes at elevated temperatures and varying oxygen partial pressure are analyzed by means of in situ high temperature XRD, DSC and dilatometry. Results are expanded by room temperature XRD of compositions with higher Sr-content up to x = 0.4. By adjusting the Sr-content, the formed crystal structure can be governed and thermal expansion can be impacted beneficially in the context of future applications utilizing monolithic structures. Phase transitions from orthorhombic to cubic were found to shift from 900 °C to 830 °C under air and to even lower temperatures under 1% O2 atmosphere. Small amounts of Sr-content (5-10%) stabilize the macroscopic structural integrity by improving the reversibility of the cyclic thermal expansion and contraction in a 1% O2 atmosphere. However, at Sr-contents of 20% an increased irreversible residual expansion within each thermal cycle becomes apparent and shows that such improvements do not follow a linear dependency with Sr-content, but most benefits in this context can be found at Sr-contents below 20%. The results demonstrate the sensitivity of such materials micro- and macroscopic characteristics to composition. In the context of utilization of monolithic structures, fabricated entirely from Ca1-xSrxMnO3-δ, in thermochemical or thermoelectric applications, the results have considerable significance as minor A-site Sr-substitution can substantially improve macroscopic stability of monolithic structures over multiple thermal cycles. Besides the often solely regarded thermodynamic characteristic, this work demonstrates the importance to consider the impact of composition on structural behavior in materials design processes including perovskites for thermochemical applications.

2.
ACS Appl Mater Interfaces ; 10(49): 43131-43143, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30422620

RESUMO

Thin alumina coatings on Li-rich nickel cobalt manganese oxide (Li-rich NCM) particles used as cathode material in Li-ion batteries can improve the capacity retention during cycling. However, the underlying mechanisms are still not fully understood. It is crucial to determine the degree of coverage of the particle's coating on various length scales from micrometer to nanometer and to link it to the electrochemical properties. Alumina coatings applied on Li-rich NCM by atomic layer deposition or by chemical solution deposition were examined. The degree of coverage and the morphology of the particle coatings were investigated by time-of-flight secondary-ion mass spectrometry (ToF-SIMS), scanning electron microscopy, elemental analysis using inductively coupled plasma optical emission spectrometry, and scanning/transmission electron microscopy. ToF-SIMS allows investigating the coverage of a coating on large length scales with high lateral resolution and a surface sensitivity of a few nanometers. Regardless of the chosen coating route, analytical investigations revealed that the powder particles were not covered by a fully closed and homogenous alumina film. This study shows that a fully dense coating layer is not necessary to achieve an improvement in capacity retention. The results indicate that rather the coating process itself likely causes the improvement of the capacity retention and increases the initial capacity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA