Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37086328

RESUMO

Metazoan development arises from spatiotemporal control of gene expression, which depends on epigenetic regulators like the polycomb group proteins (PcG) that govern the chromatin landscape. PcG proteins facilitate the addition and removal of histone 2A monoubiquitination at lysine 119 (H2AK119ub1), which regulates gene expression, cell fate decisions, cell cycle progression, and DNA damage repair. Regulation of these processes by PcG proteins is necessary for proper development, as pathogenic variants in these genes are increasingly recognized to underly developmental disorders. Overlapping features of developmental syndromes associated with pathogenic variants in specific PcG genes suggest disruption of central developmental mechanisms; however, unique clinical features observed in each syndrome suggest additional non-redundant functions for each PcG gene. In this review, we describe the clinical manifestations of pathogenic PcG gene variants, review what is known about the molecular functions of these gene products during development, and interpret the clinical data to summarize the current evidence toward an understanding of the genetic and molecular mechanism.

2.
Nat Commun ; 15(1): 347, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184653

RESUMO

The morphology of cells is dynamic and mediated by genetic and environmental factors. Characterizing how genetic variation impacts cell morphology can provide an important link between disease association and cellular function. Here, we combine genomic sequencing and high-content imaging approaches on iPSCs from 297 unique donors to investigate the relationship between genetic variants and cellular morphology to map what we term cell morphological quantitative trait loci (cmQTLs). We identify novel associations between rare protein altering variants in WASF2, TSPAN15, and PRLR with several morphological traits related to cell shape, nucleic granularity, and mitochondrial distribution. Knockdown of these genes by CRISPRi confirms their role in cell morphology. Analysis of common variants yields one significant association and nominate over 300 variants with suggestive evidence (P < 10-6) of association with one or more morphology traits. We then use these data to make predictions about sample size requirements for increasing discovery in cellular genetic studies. We conclude that, similar to molecular phenotypes, morphological profiling can yield insight about the function of genes and variants.


Assuntos
Células-Tronco Pluripotentes Induzidas , Locos de Características Quantitativas , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Núcleo Celular , Forma Celular , Proteínas Mutantes
3.
Cell Death Dis ; 15(5): 379, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816421

RESUMO

CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade, an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders, the role of CSMD1 in neurodevelopmental disorders is unclear. Through international variant sharing, we identified inherited biallelic CSMD1 variants in eight individuals from six families of diverse ancestry who present with global developmental delay, intellectual disability, microcephaly, and polymicrogyria. We modeled CSMD1 loss-of-function (LOF) pathogenesis in early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells (hESCs). We show that CSMD1 is necessary for neuroepithelial cytoarchitecture and synchronous differentiation. In summary, we identified a critical role for CSMD1 in brain development and biallelic CSMD1 variants as the molecular basis of a previously undefined neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Proteínas de Membrana , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Feminino , Masculino , Transtornos do Neurodesenvolvimento/genética , Alelos , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Criança , Pré-Escolar , Diferenciação Celular/genética , Proteínas Supressoras de Tumor
4.
Nat Commun ; 13(1): 3690, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760976

RESUMO

It is unclear how the 22q11.2 deletion predisposes to psychiatric disease. To study this, we generated induced pluripotent stem cells from deletion carriers and controls and utilized CRISPR/Cas9 to introduce the heterozygous deletion into a control cell line. Here, we show that upon differentiation into neural progenitor cells, the deletion acted in trans to alter the abundance of transcripts associated with risk for neurodevelopmental disorders including autism. In excitatory neurons, altered transcripts encoded presynaptic factors and were associated with genetic risk for schizophrenia, including common and rare variants. To understand how the deletion contributed to these changes, we defined the minimal protein-protein interaction network that best explains gene expression alterations. We found that many genes in 22q11.2 interact in presynaptic, proteasome, and JUN/FOS transcriptional pathways. Our findings suggest that the 22q11.2 deletion impacts genes that may converge with psychiatric risk loci to influence disease manifestation in each deletion carrier.


Assuntos
Síndrome de DiGeorge , Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Linhagem Celular , Síndrome de DiGeorge/genética , Humanos , Neurônios , RNA , Esquizofrenia/genética
5.
Macromol Biosci ; 20(3): e2000004, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32065736

RESUMO

The prevalence of dementia and other neurodegenerative diseases continues to rise as age demographics in the population shift, inspiring the development of long-term tissue culture systems with which to study chronic brain disease. Here, it is investigated whether a 3D bioengineered neural tissue model derived from human induced pluripotent stem cells (hiPSCs) can remain stable and functional for multiple years in culture. Silk-based scaffolds are seeded with neurons and glial cells derived from hiPSCs supplied by human donors who are either healthy or have been diagnosed with Alzheimer's disease. Cell retention and markers of stress remain stable for over 2 years. Diseased samples display decreased spontaneous electrical activity and a subset displays sporadic-like indicators of increased pathological ß-amyloid and tau markers characteristic of Alzheimer's disease with concomitant increases in oxidative stress. It can be concluded that the long-term stability of the platform is suited to study chronic brain disease including neurodegeneration.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Seda/química , Alicerces Teciduais/química , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia
6.
ACS Biomater Sci Eng ; 4(12): 4278-4288, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33304995

RESUMO

Three-dimensional in vitro cell culture models, particularly for the central nervous system, allow for the exploration of mechanisms of organ development, cellular interactions, and disease progression within defined environments. Here we describe the development and characterization of three-dimensional tissue models that promote the differentiation and long-term survival of functional neural networks. These tissue cultures show diverse cell populations including neurons and glial cells (astrocytes) interacting in 3D with spontaneous neural activity confirmed through electrophysiological recordings and calcium imaging over at least 8 months. This approach allows for the direct integration of pluripotent stem cells into the 3D construct bypassing early neural differentiation steps (embryoid bodies and neural rosettes), which streamlines the process while also providing a system that can be manipulated to support a variety of experimental applications. This tissue model has been tested in stem cells derived from healthy individuals as well as Alzheimer's and Parkinson's disease patients, with similar growth and gene expression responses indicating potential use in the modeling of disease states related to neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA