Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(4): 046801, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148137

RESUMO

We investigate an electron transport blockade regime in which a spin triplet localized in the path of current is forbidden from entering a spin-singlet superconductor. To stabilize the triplet, a double quantum dot is created electrostatically near a superconducting Al lead in an InAs nanowire. The quantum dot closest to the normal lead exhibits Coulomb diamonds, and the dot closest to the superconducting lead exhibits Andreev bound states and an induced gap. The experimental observations compare favorably to a theoretical model of Andreev blockade, named so because the triplet double dot configuration suppresses Andreev reflections. Observed leakage currents can be accounted for by finite temperature. We observe the predicted quadruple level degeneracy points of high current and a periodic conductance pattern controlled by the occupation of the normal dot. Even-odd transport asymmetry is lifted with increased temperature and magnetic field. This blockade phenomenon can be used to study spin structure of superconductors. It may also find utility in quantum computing devices that use Andreev or Majorana states.

2.
Phys Rev Lett ; 123(18): 180402, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31763915

RESUMO

Inspired by the microscopic control over dissipative processes in quantum optics and cold atoms, we develop an open-system framework to study dissipative control of transport in strongly interacting fermionic systems, relevant for both solid-state and cold-atom experiments. We show how subgap currents exhibiting multiple Andreev reflections-the stimulated transport of electrons in the presence of Cooper pairs-can be controlled via engineering of superconducting leads or superfluid atomic gases. Our approach incorporates dissipation within the channel, which is naturally occurring and can be engineered in cold gas experiments. This opens opportunities for engineering many phenomena with transport in strongly interacting systems. As examples, we consider particle loss and dephasing, and note different behavior for currents with different microscopic origin. We also show how to induce nonreciprocal electron and Cooper-pair currents.

3.
Phys Rev Lett ; 123(9): 090401, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524491

RESUMO

We show that atoms in tilted optical superlattices provide a platform for exploring coupled spin chains of forms that are not present in other systems. In particular, using a period-2 superlattice in one dimension, we show that coupled Ising spin chains with XZ and ZZ spin coupling terms can be engineered. We use optimized tensor network techniques to explore the criticality and nonequilibrium dynamics in these models, finding a tricritical Ising point in regimes that are accessible in current experiments. These setups are ideal for studying low-entropy physics, as initial entropy is "frozen-out" in realizing the spin models, and provide an example of the complex critical behavior that can arise from interaction-projected models.

4.
Nano Lett ; 18(7): 4473-4481, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29924620

RESUMO

SrTiO3-based heterointerfaces support quasi-two-dimensional (2D) electron systems that are analogous to III-V semiconductor heterostructures, but also possess superconducting, magnetic, spintronic, ferroelectric, and ferroelastic degrees of freedom. Despite these rich properties, the relatively low mobilities of 2D complex-oxide interfaces appear to preclude ballistic transport in 1D. Here we show that the 2D LaAlO3/SrTiO3 interface can support quantized ballistic transport of electrons and (nonsuperconducting) electron pairs within quasi-1D structures that are created using a well-established conductive atomic-force microscope (c-AFM) lithography technique. The nature of transport ranges from truly single-mode (1D) to three-dimensional (3D), depending on the applied magnetic field and gate voltage. Quantization of the lowest e2/ h plateau indicate a ballistic mean-free path lMF ∼ 20 µm, more than 2 orders of magnitude larger than for 2D LaAlO3/SrTiO3 heterostructures. Nonsuperconducting electron pairs are found to be stable in magnetic fields as high as B = 11 T and propagate ballistically with conductance quantized at 2 e2/ h. Theories of one-dimensional (1D) transport of interacting electron systems depend crucially on the sign of the electron-electron interaction, which may help explain the highly ballistic transport behavior. The 1D geometry yields new insights into the electronic structure of the LaAlO3/SrTiO3 system and offers a new platform for the study of strongly interacting 1D electronic systems.

5.
Opt Express ; 26(3): 2857-2872, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401820

RESUMO

We propose using a topological plasmonic crystal structure composed of an array of nearly parallel nanowires with unequal spacing for manipulating light. In the paraxial approximation, the Helmholtz equation that describes the propagation of light along the nanowires maps onto the Schrödinger equation of the Su-Schrieffer-Heeger (SSH) model. Using a full three-dimensional finite difference time domain solution of the Maxwell equations, we verify the existence of topological defect modes, with sub-wavelength localization, bound to domain walls of the plasmonic crystal. We show that by manipulating domain walls we can construct spatial mode filters that couple bulk modes to topological defect modes, and topological beam-splitters that couple two topological defect modes. Finally, we show that the structures are tolerant to fabrication errors with an inverse length-scale smaller than the topological band gap.

6.
Nature ; 487(7408): 454-8, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22837000

RESUMO

Spontaneous symmetry breaking plays a key role in our understanding of nature. In relativistic quantum field theory, a broken continuous symmetry leads to the emergence of two types of fundamental excitation: massless Nambu-Goldstone modes and a massive 'Higgs' amplitude mode. An excitation of Higgs type is of crucial importance in the standard model of elementary particle physics, and also appears as a fundamental collective mode in quantum many-body systems. Whether such a mode exists in low-dimensional systems as a resonance-like feature, or whether it becomes overdamped through coupling to Nambu-Goldstone modes, has been a subject of debate. Here we experimentally find and study a Higgs mode in a two-dimensional neutral superfluid close to a quantum phase transition to a Mott insulating phase. We unambiguously identify the mode by observing the expected reduction in frequency of the onset of spectral response when approaching the transition point. In this regime, our system is described by an effective relativistic field theory with a two-component quantum field, which constitutes a minimal model for spontaneous breaking of a continuous symmetry. Additionally, all microscopic parameters of our system are known from first principles and the resolution of our measurement allows us to detect excited states of the many-body system at the level of individual quasiparticles. This allows for an in-depth study of Higgs excitations that also addresses the consequences of the reduced dimensionality and confinement of the system. Our work constitutes a step towards exploring emergent relativistic models with ultracold atomic gases.

7.
Phys Rev Lett ; 118(1): 017201, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28106442

RESUMO

A key property of many-body localized Hamiltonians is the area law entanglement of even highly excited eigenstates. Matrix product states (MPS) can be used to efficiently represent low entanglement (area law) wave functions in one dimension. An important application of MPS is the widely used density matrix renormalization group (DMRG) algorithm for finding ground states of one-dimensional Hamiltonians. Here, we develop two algorithms, the shift-and-invert MPS (SIMPS) and excited state DMRG which find highly excited eigenstates of many-body localized Hamiltonians. Excited state DMRG uses a modified sweeping procedure to identify eigenstates, whereas SIMPS applies the inverse of the shifted Hamiltonian to a MPS multiple times to project out the targeted eigenstate. To demonstrate the power of these methods, we verify the breakdown of the eigenstate thermalization hypothesis in the many-body localized phase of the random field Heisenberg model, show the saturation of entanglement in the many-body localized phase, and generate local excitations.

8.
Phys Rev Lett ; 119(7): 075701, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28949663

RESUMO

Many-body localization (MBL) is a phase of matter that is characterized by the absence of thermalization. Dynamical generation of a large number of local quantum numbers has been identified as one key characteristic of this phase, quite possibly the microscopic mechanism of breakdown of thermalization and the phase transition itself. We formulate a robust algorithm, based on Wegner-Wilson flow (WWF) renormalization, for computing these conserved quantities and their interactions. We present evidence for the existence of distinct fixed point distributions of the latter: a Gaussian white-noise-like distribution in the ergodic phase, a 1/f law inside the MBL phase, and scale-free distributions in the transition regime.

9.
Phys Rev Lett ; 115(23): 236803, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684134

RESUMO

We propose a hexagonal optical lattice system with spatial variations in the hopping matrix elements. Just like in the valley Hall effect in strained graphene, for atoms near the Dirac points the variations in the hopping matrix elements can be described by a pseudomagnetic field and result in the formation of Landau levels. We show that the pseudomagnetic field leads to measurable experimental signatures in momentum resolved Bragg spectroscopy, Bloch oscillations, cyclotron motion, and quantization of in situ densities. Our proposal can be realized by a slight modification of existing experiments. In contrast to previous methods, pseudomagnetic fields are realized in a completely static system avoiding common heating effects and therefore opening the door to studying interaction effects in Landau levels with cold atoms.

10.
Phys Rev Lett ; 111(10): 107007, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-25166701

RESUMO

We propose to use an ancilla fluxonium qubit to interact with a Majorana qubit hosted by a topological one-dimensional wire. The coupling is obtained using the Majorana qubit-controlled 4π Josephson effect to flux bias the fluxonium qubit. We demonstrate how this coupling can be used to sensitively identify topological superconductivity, to measure the state of the Majorana qubit, to construct 2-qubit operations, and to implement quantum memories with topological protection.

11.
Phys Rev Lett ; 107(1): 017002, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21797565

RESUMO

Recent experiments on the conductance of thin, narrow superconducting strips have found periodic fluctuations, as a function of the perpendicular magnetic field, with a period corresponding to approximately two flux quanta per strip area [A. Johansson et al., Phys. Rev. Lett. 95, 116805 (2005)]. We argue that the low-energy degrees of freedom responsible for dissipation correspond to vortex motion. Using vortex-charge duality, we show that the superconducting strip behaves as the dual of a quantum dot, with the vortices, magnetic field, and bias current respectively playing the roles of the electrons, gate voltage, and source-drain voltage. In the bias-current versus magnetic-field plane, the strip conductance displays regions of small vortex conductance (i.e., small electrical resistance) that we term "Weber blockade" diamonds, which are dual to Coulomb blockade diamonds in quantum dots.

12.
Phys Rev Lett ; 106(5): 050402, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21405378

RESUMO

We study the quench dynamics of a two-component ultracold Fermi gas from the weak into the strong interaction regime, where the short time dynamics are governed by the exponential growth rate of unstable collective modes. We obtain an effective interaction that takes into account both Pauli blocking and the energy dependence of the scattering amplitude near a Feshbach resonance. Using this interaction we analyze the competing instabilities towards Stoner ferromagnetism and pairing.

13.
Phys Rev Lett ; 107(14): 145303, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22107207

RESUMO

We theoretically study the relaxation of high energy single particle excitations into molecules in a system of attractive fermions in an optical lattice, both in the superfluid and the normal phase. In a system characterized by an interaction scale U and a tunneling rate t, we show that the relaxation rate scales as ∼Ctexp[-αU(2)/t(2)ln(U/t)] in the large U/t limit. We obtain explicit expressions for the temperature and density dependent exponent α, both in the low temperature superfluid phase and the high temperature phase with pairing but no coherence between the molecules. We find that the relaxation rate decreases both with temperature and deviation of the fermion density from half filling. We show that quasiparticle and phase degrees of freedom are effectively decoupled within experimental time scales allowing for observation of ordered states even at high total energy of the system.

14.
Phys Rev Lett ; 107(23): 236401, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22182106

RESUMO

A junction between two topological superconductors containing a pair of Majorana fermions exhibits a "fractional" Josephson effect, 4π periodic in the superconductors' phase difference. An additional fractional Josephson effect, however, arises when the Majorana fermions are spatially separated by a superconducting barrier. This new term gives rise to a set of Shapiro steps which are essentially absent without Majorana modes and therefore provides a unique signature for these exotic states.

15.
Phys Rev Lett ; 106(22): 220402, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21702583

RESUMO

We introduce a new approach to create and detect Majorana fermions using optically trapped 1D fermionic atoms. In our proposed setup, two internal states of the atoms couple via an optical Raman transition-simultaneously inducing an effective spin-orbit interaction and magnetic field-while a background molecular BEC cloud generates s-wave pairing for the atoms. The resulting cold-atom quantum wire supports Majorana fermions at phase boundaries between topologically trivial and nontrivial regions, as well as "Floquet Majorana fermions" when the system is periodically driven. We analyze experimental parameters, detection schemes, and various imperfections.

16.
Nat Commun ; 12(1): 5620, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556650

RESUMO

Due to their high coherence, lasers are ubiquitous tools in science. We show that by engineering the coupling between the gain medium and the laser cavity as well as the laser cavity and the output port, it is possible to eliminate most of the noise due to photons entering as well as leaving the laser cavity. Hence, it is possible to reduce the laser linewidth by a factor equal to the number of photons in the laser cavity below the standard quantum limit. We design and theoretically analyze a superconducting circuit that uses Josephson junctions, capacitors and inductors to implement a microwave laser, including the low-noise couplers that allow the design to surpass the standard quantum limit. Our proposal relies on the elements of superconducting quantum information, and thus is an example of how quantum engineering techniques can inspire us to re-imagine the limits of conventional quantum systems.

17.
Phys Rev Lett ; 105(8): 085302, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20868108

RESUMO

We consider a stack of weakly Josephson coupled superfluid layers with c-axis disorder in the form of random superfluid stiffnesses and vortex fugacities in each layer as well as random interlayer coupling strengths. In the absence of disorder this system has a 3D XY type superfluid-normal phase transition as a function of temperature. We develop a functional renormalization group to treat the effects of disorder, and demonstrate that the disorder results in the smearing of the superfluid-normal phase transition via the formation of a Griffiths phase. Remarkably, in the Griffiths phase, the emergent power-law distribution of the interlayer couplings gives rise to a sliding Griffiths superfluid, with a finite stiffness in the a-b direction along the layers, and a vanishing stiffness perpendicular to it.

18.
Phys Rev Lett ; 104(8): 080401, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366917

RESUMO

We investigate the decay of highly excited states of ultracold fermions in a three-dimensional optical lattice. Starting from a repulsive Fermi-Hubbard system near half filling, we generate additional doubly occupied sites (doublons) by lattice modulation. The subsequent relaxation back to thermal equilibrium is monitored over time. The measured absolute doublon lifetime covers 2 orders of magnitude. In units of the tunneling time h/J it is found to depend exponentially on the ratio of on-site interaction energy U to kinetic energy J. We argue that the dominant mechanism for the relaxation is a simultaneous many-body process involving several single fermions as scattering partners. A many-body calculation is carried out using diagrammatic methods, yielding fair agreement with the data.

19.
Science ; 367(6479): 769-772, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32054758

RESUMO

One-dimensional electronic systems can support exotic collective phases because of the enhanced role of electron correlations. We describe the experimental observation of a series of quantized conductance steps within strongly interacting electron waveguides formed at the lanthanum aluminate-strontium titanate (LaAlO3/SrTiO3) interface. The waveguide conductance follows a characteristic sequence within Pascal's triangle: (1, 3, 6, 10, 15, …) ⋅ e 2 /h, where e is the electron charge and h is the Planck constant. This behavior is consistent with the existence of a family of degenerate quantum liquids formed from bound states of n = 2, 3, 4, … electrons. Our experimental setup could provide a setting for solid-state analogs of a wide range of composite fermionic phases.

20.
Nat Commun ; 8(1): 585, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28928420

RESUMO

Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA