Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(17): e2121945119, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439053

RESUMO

SignificanceNanoporous carbon texture makes fundamental understanding of the electrochemical processes challenging. Based on density functional theory (DFT) results, the proposed atomistic approach takes into account topological and chemical defects of the electrodes and attributes to them a partial charge that depends on the applied voltage. Using a realistic carbon nanotexture, a model is developed to simulate the ionic charge both at the surface and in the subnanometric pores of the electrodes of a supercapacitor. Before entering the smallest pores, ions dehydrate at the external surface of the electrodes, leading to asymmetric adsorption behavior. Ions in subnanometric pores are mostly fully dehydrated. The simulated capacitance is in qualitative agreement with experiments. Part of these ions remain irreversibly trapped upon discharge.

2.
Langmuir ; 38(43): 13065-13074, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36264040

RESUMO

Bottom-up modeling of clay behavior from the molecular scale requires a detailed understanding of the free energy between pairs of clay platelets. We investigate the potential of mean force (PMF) for hydrated clays in face-to-face interactions with free energy perturbation (FEP) methods through molecular dynamics simulations using simple overlap sampling (SOS). We show that PMF results for open systems with one finite in-plane dimension are affected by migration of counterions from within the interlayer space compared with fully confined closed system conditions. We compare PMFs for two common 2:1 clay sheet minerals Illite (IMt-1) and Na-smectite. The PMFs for the open illite systems exhibit a strong attractive energy well at a basal layer separation, d = 11 Å and interlayer water content, wIL = ∼0.4% while the attractive minimum for the closed system occurs at d = 12 Å, wIL = 3.5%. In contrast, net repulsion occurs between pairs of Na-smectite platelets for both open and closed systems (for d < 15-16 Å). The free energy is closely related to the distribution of counterions; while K+ ions are bound closely to the surfaces of the illite platelets, Na+ ions are more spatially disperse. This PMF results contradict prior findings for Na-smectite and prompted further comparisons with other published results. We find that most of the published results do not represent accurately the free energy for face-face interactions between pairs of clay platelets that are effectively infinite (with width/thickness O[104]). The PMF results presented in this paper form a reliable basis for mesoscale, coarse-grained modeling of illite and smectite particle assemblies. We show that the Gay-Berne potential provides a reasonable first-order model for upscaling, while the solvation potential proposed by Masoumi enables a more accurate representation of the computed PMFs.

3.
Phys Chem Chem Phys ; 24(16): 9229-9235, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35388814

RESUMO

The precipitation of zeolite nanoparticles involves the initial formation of metastable precursors, such as amorphous entities, that crystallize through non-classical pathways. Here, using reactive force field-based simulations, we reveal how aluminosilicate oligomers grow concomitantly to the decondensation of silicate entities during the initial step of the reaction. Aluminate clusters first form in the solution, thus violating the Loewenstein rule in the first instant of the reaction, which is then followed by their connection with silicate oligomers at the terminal silanol groups before reorganization to finally diffuse within the silicate oligomers to form stable amorphous aluminosilicate nanoparticles that do obey the Loewenstein rule. Our results clearly indicate that aluminate does not serve as the nucleation center for the growth of aluminosilicates in a nucleation-like process but rather proceeds via an aggregation process. The coexistence of aluminosilicate oligomers and small silicate entities induces a phase separation that promotes the precipitation of zeolites with aging.

4.
Langmuir ; 37(18): 5464-5474, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33909979

RESUMO

A significant part of the hydrocarbons contained in source rocks remains confined within the organic matter-called kerogen-from where they are generated. Understanding the sorption and transport properties of confined hydrocarbons within the kerogens is, therefore, paramount to predict production. Specifically, knowing the impact of thermal maturation on the evolution of the organic porous network is key. Here, we propose an experimental procedure to study the interplay between the chemical evolution and the structural properties of the organic porous network at the nanometer scale. First, the organic porous networks of source rock samples, covering a significant range of natural thermal maturation experienced by the Vaca Muerta formation (Neuquén Basin, Argentina), are physically reconstructed using bright-field electron tomography. Their structural description allows us to measure crucial parameters such as the porosity, specific pore volume and surface area, aperture and cavity size distributions, and constriction. In addition, a model-free computation of the topological properties (effective porosity, connectivity, and tortuosity) is conducted. Overall, we document a general increase of the specific pore volume with thermal maturation. This controls the topological features depicting increasing accessibility to alkane molecules, sensed by the evolution of the effective porosity. Collectively, our results highlight the input of bright-field electron tomography in the study of complex disordered amorphous porous media, especially to describe the interplay between the structural features and transport properties of confined fluids.

5.
Proc Natl Acad Sci U S A ; 115(49): 12365-12370, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30442660

RESUMO

Organic matter is responsible for the generation of hydrocarbons during the thermal maturation of source rock formation. This geochemical process engenders a network of organic hosted pores that governs the flow of hydrocarbons from the organic matter to fractures created during the stimulation of production wells. Therefore, it can be reasonably assumed that predictions of potentially recoverable confined hydrocarbons depend on the geometry of this pore network. Here, we analyze mesoscale structures of three organic porous networks at different thermal maturities. We use electron tomography with subnanometric resolution to characterize their morphology and topology. Our 3D reconstructions confirm the formation of nanopores and reveal increasingly tortuous and connected pore networks in the process of thermal maturation. We then turn the binarized reconstructions into lattice models including information from atomistic simulations to derive mechanical and confined fluid transport properties. Specifically, we highlight the influence of adsorbed fluids on the elastic response. The resulting elastic energy concentrations are localized at the vicinity of macropores at low maturity whereas these concentrations present more homogeneous distributions at higher thermal maturities, due to pores' topology. The lattice models finally allow us to capture the effect of sorption on diffusion mechanisms with a sole input of network geometry. Eventually, we corroborate the dominant impact of diffusion occurring within the connected nanopores, which constitute the limiting factor of confined hydrocarbon transport in source rocks.

6.
Phys Rev Lett ; 125(25): 255501, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416387

RESUMO

Using a 3D mean-field lattice-gas model, we analyze the effect of confinement on the nature of capillary phase transition in granular aggregates with varying disorder and their inverse porous structures obtained by interchanging particles and pores. Surprisingly, the confinement effects are found to be much less pronounced in granular aggregates as opposed to porous structures. We show that this discrepancy can be understood in terms of the surface-surface correlation length with a connected path through the fluid domain, suggesting that this length captures the true degree of confinement. We also find that the liquid-gas phase transition in these porous materials is of second order nature near capillary critical temperature, which is shown to represent a true critical temperature, i.e., independent of the degree of disorder and the nature of the solid matrix, discrete or continuous. The critical exponents estimated here from finite-size scaling analysis suggest that this transition belongs to the 3D random field Ising model universality class as hypothesized by F. Brochard and P.G. de Gennes, with the underlying random fields induced by local disorder in fluid-solid interactions.

7.
J Chem Phys ; 152(2): 024123, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31941333

RESUMO

Reactive molecular dynamics (MD) simulations, especially those employing acceleration techniques, can provide useful insights on the mechanism underlying the transformation of buried organic matter, yet, so far, it remains extremely difficult to predict the time scales associated with these processes at moderate temperatures (i.e., when such time scales are considerably larger than those accessible to MD). We propose here an accelerated method based on flux sampling and kinetic integration along a 1D order parameter that can considerably extend the accessible time scales. We demonstrate the utility of this technique in an application to the dehydration of crystalline cellulose at temperatures ranging from 1900 K to 1500 K. The full decomposition is obtained at all temperatures apart from T = 1500 K, showing the same distribution of the main volatiles (H2O, CO, and CO2) as recently obtained using replica exchange molecular dynamics. The kinetics of the process is well fitted with an Arrhenius law with Ea = 93 kcal/mol and k0 = 9 × 1019 s-1, which are somehow larger than experimental reports. Unexpectedly, the process seems to considerably slow down at lower temperatures, severely departing from the Arrhenius regime, probably because of an inadequate choice of the order parameter. Nevertheless, we show that the proposed method allows considerable time sampling at low temperatures compared to conventional MD.

8.
Langmuir ; 35(12): 4397-4402, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30798608

RESUMO

A numerical and theoretical framework to address the poromechanical effect of capillary stress in complex mesoporous materials is proposed and exemplified for water sorption in cement. We first predict the capillary condensation/evaporation isotherm using lattice-gas simulations in a realistic nanogranular cement model. A phase-field model to calculate moisture-induced capillary stress is then introduced and applied to cement at different water contents. We show that capillary stress is an effective mechanism for eigenstress relaxation in granular heterogeneous porous media, which contributes to the durability of cement.

9.
Proc Natl Acad Sci U S A ; 113(8): 2029-34, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858450

RESUMO

Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials.

10.
Langmuir ; 34(45): 13766-13780, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30351957

RESUMO

While hydrocarbon expulsion from kerogen is certainly the key step in shale oil/gas recovery, the poromechanical couplings governing this desorption process, taking place under a significant pressure gradient, are still poorly understood. Especially, most molecular simulation investigations of hydrocarbon adsorption and transport in kerogen have so far been performed under the rigid matrix approximation, implying that the pore space is independent of pressure, temperature, and fluid loading, or in other words, neglecting poromechanics. Here, using two hydrogenated porous carbon models as proxies for immature and overmature kerogen, that is, highly aliphatic hydrogen-rich vs highly aromatic hydrogen-poor models, we perform an extensive molecular-dynamics-based investigation of the evolution of the poroelastic properties of those matrices with respect to temperature, external pressure, and methane loading as a prototype alkane molecule. The rigid matrix approximation is shown to hold reasonably well for overmature kerogen even though accounting for flexibility has allowed us to observe the well-known small volume contraction at low fluid loading and temperature. Our results demonstrate that immature kerogen is highly deformable. Within the ranges of conditions considered in this work, its density can double and its accessible porosity (to a methane molecule) can increase from 0 to ∼30%. We also show that these deformations are significantly nonaffine (i.e., nonhomogeneous), especially upon fluid adsorption or desorption.

11.
Nat Mater ; 15(5): 576-82, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26828313

RESUMO

Despite kerogen's importance as the organic backbone for hydrocarbon production from source rocks such as gas shale, the interplay between kerogen's chemistry, morphology and mechanics remains unexplored. As the environmental impact of shale gas rises, identifying functional relations between its geochemical, transport, elastic and fracture properties from realistic molecular models of kerogens becomes all the more important. Here, by using a hybrid experimental-simulation method, we propose a panel of realistic molecular models of mature and immature kerogens that provide a detailed picture of kerogen's nanostructure without considering the presence of clays and other minerals in shales. We probe the models' strengths and limitations, and show that they predict essential features amenable to experimental validation, including pore distribution, vibrational density of states and stiffness. We also show that kerogen's maturation, which manifests itself as an increase in the sp(2)/sp(3) hybridization ratio, entails a crossover from plastic-to-brittle rupture mechanisms.

12.
Langmuir ; 33(9): 2109-2121, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28165248

RESUMO

Realistic molecular models of silica-templated CMK-1, CMK-3, and CMK-5 carbon materials have been developed by using carbon rods and carbon pipes that were obtained by adsorbing carbon in a model MCM-41 pore. The interactions between the carbon atoms with the silica matrix were described using the PN-Traz potential, and the interaction between the carbon atoms was calculated by the reactive empirical bond order (REBO) potential. Carbon rods and pipes with different thicknesses were obtained by changing the silica-carbon interaction strength, the temperature, and the chemical potential of carbon vapor adsorption. These equilibrium structures were further used to obtain the atomic models of CMK-1, CMK-3, and CMK-5 materials using the same symmetry as found in TEM pictures. These models are further refined and made more realistic by adding interconnections between the carbon rods and carbon pipes. We calculated the geometric pore size distribution of the different models of CMK-5 and found that the presence of interconnections results in some new features in the pore size distribution. Argon adsorption properties were investigated using GCMC simulations to characterize these materials at 77 K. We found that the presence of interconnection results greatly improves the agreement with available experimental data by shifting the capillary condensation to lower pressures. Adding interconnections also induces smoother adsorption/condensation isotherms, and desorption/evaporation curves show a sharp jump. These features reflex the complexity of the nanovoids in CMKs in terms of their pore morphology and topology.

13.
Langmuir ; 33(42): 11457-11466, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28728412

RESUMO

Synthetic organic-inorganic composites constitute a new class of engineering materials finding applications in an increasing range of fields. The interface between the constituting phases plays a pivotal role in the enhancement of mechanical properties. In exfoliated clay-organic nanocomposites, individual, high aspect ratio clay sheets are dispersed in the organic matrix providing large interfaces and hence efficient stress transfer. In this study, we aim at elucidating molecular-scale reinforcing mechanisms in a series of model clay-organic composite systems by means of reactive molecular simulations. In our models, two possible locations of failure initiation are present: one is the interlayer space of the clay platelet, and the other one is the clay-organic interface. We systematically modify the cohesiveness of the interface and assess how the failure mechanism changes when the different model composites are subjected to a tensile test. Besides a change in the failure mechanism, an increase in the released energy at the interface (meaning an increased overall toughness) are observed upon weakening the interface by bond removal. We propose a theoretical analysis of these results by considering a cohesive law that captures the effect of the interface on the composite mechanics. We suggest an atomistic interpretation of this cohesive law, in particular, how it relates to the degree of bonding at the interface. In a broader perspective, this work sheds light on the importance of the orthogonal behavior of interfaces to nanocomposites.

14.
Langmuir ; 32(5): 1370-9, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26752345

RESUMO

We characterized experimentally the elastic and creep properties of thin self-standing clay films, and how their mechanical properties evolved with relative humidity and water content. The films were made of clay montmorillonite SWy-2, obtained by evaporation of a clay suspension. Three types of films were manufactured, which differed by their interlayer cation: sodium, calcium, or a mixture of sodium with calcium. The orientational order of the films was characterized by X-ray diffractometry. The films were mechanically solicited in tension, the resulting strains being measured by digital image correlation. We measured the Young's modulus and the creep over a variety of relative humidities, on a full cycle of adsorption-desorption for what concerns the Young's modulus. Increasing relative humidity made the films less stiff and made them creep more. Both the elastic and creep properties depended significantly on the interlayer cation. For the Young's modulus, this dependence must originate from a scale greater than the scale of the clay layer. Also, hysteresis disappeared when plotting the Young's modulus versus water content instead of relative humidity. Independent of interlayer cation and of relative humidity greater than 60%, after a transient period, the creep of the films was always a logarithmic function of time. The experimental data gathered on these mesoscale systems can be of value for modelers who aim at predicting the mechanical behavior of clay-based materials (e.g., shales) at the engineering macroscopic scale from the one at the atomistic scale, for them to validate the first steps of their upscaling scheme. They provide also valuable reference data for bioinspired clay-based hybrid materials.

15.
Phys Rev Lett ; 114(12): 125502, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25860757

RESUMO

Understanding the composition dependence of the hardness in materials is of primary importance for infrastructures and handled devices. Stimulated by the need for stronger protective screens, topological constraint theory has recently been used to predict the hardness in glasses. Herein, we report that the concept of rigidity transition can be extended to a broader range of materials than just glass. We show that hardness depends linearly on the number of angular constraints, which, compared to radial interactions, constitute the weaker ones acting between the atoms. This leads to a predictive model for hardness, generally applicable to any crystalline or glassy material.

16.
Environ Sci Technol ; 49(22): 13676-83, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26513644

RESUMO

One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of (90)Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its ß-decay on the cement paste structure. We show that (90)Sr is stable when it substitutes the Ca(2+) ions in C-S-H, and so is its daughter nucleus (90)Y after ß-decay. Interestingly, (90)Zr, daughter of (90)Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for (90)Sr storage.


Assuntos
Materiais de Construção , Resíduos Radioativos , Radioisótopos de Estrôncio/química , Compostos de Cálcio/química , Fissão Nuclear , Silicatos/química , Água/química
17.
J Chem Phys ; 142(11): 114112, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25796236

RESUMO

We report an efficient atom-scale reconstruction method that consists of combining the Hybrid Reverse Monte Carlo algorithm (HRMC) with Molecular Dynamics (MD) in the framework of a simulated annealing technique. In the spirit of the experimentally constrained molecular relaxation technique [Biswas et al., Phys. Rev. B 69, 195207 (2004)], this modified procedure offers a refined strategy in the field of reconstruction techniques, with special interest for heterogeneous and disordered solids such as amorphous porous materials. While the HRMC method generates physical structures, thanks to the use of energy penalties, the combination with MD makes the method at least one order of magnitude faster than HRMC simulations to obtain structures of similar quality. Furthermore, in order to ensure the transferability of this technique, we provide rational arguments to select the various input parameters such as the relative weight ω of the energy penalty with respect to the structure optimization. By applying the method to disordered porous carbons, we show that adsorption properties provide data to test the global texture of the reconstructed sample but are only weakly sensitive to the presence of defects. In contrast, the vibrational properties such as the phonon density of states are found to be very sensitive to the local structure of the sample.

18.
Soft Matter ; 10(8): 1121-33, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24652466

RESUMO

We investigate the development of gels under out-of-equilibrium conditions, such as calcium-silicate-hydrate (C-S-H) gels that form during cement hydration and are the major factor responsible for cement mechanical strength. We propose a new model and numerical approach to follow the gel formation upon precipitation and aggregation of nano-scale colloidal hydrates, whose effective interactions are consistent with forces measured in experiments at fixed lime concentrations. We use Grand Canonical Monte Carlo to mimic precipitation events during Molecular Dynamics simulations, with their rate corresponding to the hydrate production rate set by the chemical environment. Our results display hydrate precipitation curves that indeed reproduce the acceleration and deceleration regime typically observed in experiments and we are able to correctly capture the effect of lime concentration on the hydration kinetics and the gel morphology. Our analysis of the evolution of the gel morphology indicates that the acceleration is related to the formation of an optimal local crystalline packing that allows for large, elongated aggregates to grow and that is controlled by the underlying thermodynamics. The defects produced during precipitation favor branching and gelation that end up controlling the deceleration. The effects on the mechanical properties of C-S-H gels are also discussed.


Assuntos
Compostos de Cálcio/química , Cimentos Dentários/química , Silicatos/química , Géis/química , Modelos Químicos
19.
Soft Matter ; 10(3): 491-9, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24651715

RESUMO

Gels of calcium-silicate-hydrates (C-S-H) are the glue that is largely responsible for the mechanical properties of cement. Despite their practical relevance, their nano-scale structure and mechanics are still mainly unexplored, because of the difficulties in characterizing them in a complex material like cement. We propose a colloidal model to investigate the gel mechanics emerging in the critical range of length-scales from several tens to hundreds of nanometers. We show that the size polydispersity of the hydrates and size-dependent effective interactions can explain the mechanical heterogeneities detected in nano-indentation experiments. We also show how these features control the arising of irreversible structural rearrangements under deformation, which are good candidates as nano-scale mechanisms underlying mechanical aging and slow structural relaxation in the gels.

20.
J Chem Phys ; 140(5): 054515, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24511960

RESUMO

With shear interest in nanoporous materials, the ultraconfining interlayer spacing of calcium-silicate-hydrate (C-S-H) provides an excellent medium to study reactivity, structure, and dynamic properties of water. In this paper, we present how substrate composition affects chemo-physical properties of water in ultraconfined hydrophilic media. This is achieved by performing molecular dynamics simulation on a set of 150 realistic models with different compositions of calcium and silicon contents. It is demonstrated that the substrate chemistry directly affects the structural properties of water molecules. The motion of confined water shows a multi-stage dynamics which is characteristic of supercooled liquids and glassy phases. Inhomogeneity in that dynamics is used to differentiate between mobile and immobile water molecules. Furthermore, it is shown that the mobility of water molecules is composition-dependent. Similar to the pressure-driven self-diffusivity anomaly observed in bulk water, we report the first study on composition-driven diffusion anomaly, the self diffusivity increases with increasing confined water density in C-S-H. Such anomalous behavior is explained by the decrease in the typical activation energy required for a water molecule to escape its dynamical cage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA