Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37646578

RESUMO

Combination therapies targeting multiple organs and metabolic pathways are promising therapeutic options to combat obesity progression and/or its comorbidities. The alterations in the composition of the gut microbiota initially observed in obesity have been extended recently to functional alterations. Bacterial functions involve metabolites synthesis that may contribute to both the gut microbiota and the host physiology. Among them are B vitamins, whose metabolism at the systemic, tissue or microbial level are dysfunctional in obesity. We previously reported that the combination of oral supplementation of a prebiotic (fructo-oligosaccharides, FOS) and vitamin B7/B8 (biotin) impedes fat mass accumulation and hyperglycemia in mice with established obesity. This was associated with an attenuation of dysbiosis with improved microbial vitamin metabolism. We now extend this study by characterizing whole-body energy metabolism along with adipose tissue transcriptome and histology in this mouse model. We observed that FOS resulted in increased caloric excretion in parallel with down-regulation of genes and proteins involved in jejunal lipid transport. The combined treatments also strongly inhibited the accumulation of subcutaneous fat mass, with a reduced adipocyte size and expression of lipid metabolism genes. Down-regulation of inflammatory and fibrotic genes and proteins was also observed in both visceral and brown adipose tissues and liver by combined FOS and biotin supplementation. In conclusion, oral administration of a prebiotic and biotin has a beneficial impact on the metabolism of key organs involved in the pathophysiology of obesity, which could have promising translational applications.

2.
Gut ; 71(12): 2463-2480, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35017197

RESUMO

OBJECTIVES: Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome's functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. DESIGN: We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. RESULTS: Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. CONCLUSION: Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity. TRIAL REGISTRATION NUMBER: NCT02059538.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Obesidade Mórbida , Complexo Vitamínico B , Humanos , Camundongos , Animais , Prebióticos , Obesidade Mórbida/cirurgia , Biotina/farmacologia , Complexo Vitamínico B/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Inflamação
3.
FASEB J ; 33(4): 4741-4754, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30608881

RESUMO

Lipidomic techniques can improve our understanding of complex lipid interactions that regulate metabolic diseases. Here, a serum phospholipidomics analysis identified associations between phosphatidylglycerols (PGs) and gut microbiota dysbiosis. Compared with the other phospholipids, serum PGs were the most elevated in patients with low microbiota gene richness, which were normalized after a dietary intervention that restored gut microbial diversity. Serum PG levels were positively correlated with metagenomic functional capacities for bacterial LPS synthesis and host markers of low-grade inflammation; transcriptome databases identified PG synthase, the first committed enzyme in PG synthesis, as a potential mediator. Experiments in mice and cultured human-derived macrophages demonstrated that LPS induces PG release. Acute PG treatment in mice altered adipose tissue gene expression toward remodeling and inhibited ex vivo lipolysis in adipose tissue, suggesting that PGs favor lipid storage. Indeed, several PG species were associated with the severity of obesity in mice and humans. Finally, despite enrichment in PGs in bacterial membranes, experiments employing gnotobiotic mice colonized with recombinant PG overproducing Lactococcus lactis showed limited direct contribution of microbial PGs to the host. In summary, PGs are inflammation-responsive lipids indirectly regulated by the gut microbiota via endotoxins and regulate adipose tissue homeostasis in obesity.-Kayser, B. D., Lhomme, M., Prifti, E., Da Cunha, C., Marquet, F., Chain, F., Naas, I., Pelloux, V., Dao, M.-C., Kontush, A., Rizkalla, S. W., Aron-Wisnewsky, J., Bermúdez-Humarán, L. G., Oakley, F., Langella, P., Clément, K., Dugail, I. Phosphatidylglycerols are induced by gut dysbiosis and inflammation, and favorably modulate adipose tissue remodeling in obesity.


Assuntos
Tecido Adiposo/metabolismo , Disbiose/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Fosfatidilgliceróis/metabolismo , Animais , Feminino , Humanos , Lipidômica/métodos , Lipólise/fisiologia , Masculino , Metagenômica/métodos , Camundongos
4.
Diabetologia ; 57(8): 1674-83, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24891017

RESUMO

AIMS/HYPOTHESIS: Cathepsin S (CatS) belongs to a family of proteases that have been implicated in several disease processes. We previously identified CatS as a protein that is markedly overexpressed in adipose tissue of obese individuals and downregulated after weight loss and amelioration of glycaemic status induced by gastric bypass surgery. This prompted us to test whether the protease contributes to the pathogenesis of type 2 diabetes using mouse models with CatS inactivation. METHODS: CatS knockout mice and wild-type mice treated with orally active small-molecule CatS inhibitors were fed chow or high-fat diets and explored for change in glycaemic status. RESULTS: CatS deletion induced a robust reduction in blood glucose, which was preserved in diet-induced obesity and with ageing and was recapitulated with CatS inhibition in obese mice. In vivo testing of glucose tolerance, insulin sensitivity and glycaemic response to gluconeogenic substrates revealed that CatS suppression reduced hepatic glucose production despite there being no improvement in insulin sensitivity. This phenotype relied on downregulation of gluconeogenic gene expression in liver and a lower rate of hepatocellular respiration. Mechanistically, we found that the protein 'regulated in development and DNA damage response 1' (REDD1), a factor potentially implicated in reduction of respiratory chain activity, was overexpressed in the liver of mice with CatS deficiency. CONCLUSIONS/INTERPRETATION: Our results revealed an unexpected metabolic effect of CatS in promoting pro-diabetic alterations in the liver. CatS inhibitors currently proposed for treatment of autoimmune diseases could help to lower hepatic glucose output in obese individuals at risk for type 2 diabetes.


Assuntos
Glicemia/metabolismo , Catepsinas/antagonistas & inibidores , Catepsinas/genética , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Animais , Catepsinas/metabolismo , Dieta Hiperlipídica , Insulina/metabolismo , Camundongos , Camundongos Knockout , Consumo de Oxigênio/fisiologia
5.
J Hepatol ; 56(5): 1152-1158, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22245892

RESUMO

BACKGROUND & AIMS: In addition to total body fat, the regional distribution and inflammatory status of enlarged adipose tissue are strongly associated with metabolic co-morbidities of obesity. We recently showed that the severity of histological liver lesions related to obesity increases with the amount of macrophage accumulation in visceral adipose tissue (VAT), while no association was found with the subcutaneous adipose tissue (SAT). In the abdominal region, SAT is anatomically divided into two layers, i.e. superficial (sSAT) and deep (dSAT). The aim of the present study was to test the hypothesis that these distinct compartments differentially contribute to hepatic alterations in obesity. METHODS: Biopsies of the liver, sSAT, dSAT, and VAT were collected in 45 subjects with morbid obesity (age 43.7±1.6 years; BMI 48.5±1.2kg/m(2)) during bariatric surgery. Large scale gene expression analysis was performed to identify the pathways that discriminate sSAT from dSAT. Adipose tissue macrophages were quantified by immunohistochemistry using HAM56 antibody in subjects scored for liver histopathology. RESULTS: An inflammatory gene pattern discriminates between sSAT and dSAT. dSAT displayed an intermediate level of macrophage accumulation between sSAT and VAT. The abundance of macrophages in dSAT, but not in sSAT, was significantly increased in patients with non-alcoholic steatohepatitis (NASH) and/or fibroinflammatory hepatic lesions. CONCLUSIONS: These data show distinct gene signature and macrophage abundance in the two compartments of SAT, with dSAT more closely related to VAT than to sSAT in terms of inflammation and relation with the severity of liver diseases in morbid obesity.


Assuntos
Fígado/patologia , Obesidade Mórbida/patologia , Gordura Subcutânea/patologia , Adulto , Biópsia , Feminino , Fibrose , Humanos , Inflamação/patologia , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade
6.
Front Med (Lausanne) ; 9: 829979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252260

RESUMO

Sleep Apnea Syndrome (SAS) is one of the most common chronic diseases, affecting nearly one billion people worldwide. The repetitive occurrence of abnormal respiratory events generates cyclical desaturation-reoxygenation sequences known as intermittent hypoxia (IH). Among SAS metabolic sequelae, it has been established by experimental and clinical studies that SAS is an independent risk factor for the development and progression of non-alcoholic fatty liver disease (NAFLD). The principal goal of this study was to decrypt the molecular mechanisms at the onset of IH-mediated liver injury. To address this question, we used a unique mouse model of SAS exposed to IH, employed unbiased high-throughput transcriptomics and computed network analysis. This led us to examine hepatic mitochondrial ultrastructure and function using electron microscopy, high-resolution respirometry and flux analysis in isolated mitochondria. Transcriptomics and network analysis revealed that IH reprograms Nuclear Respiratory Factor- (NRF-) dependent gene expression and showed that mitochondria play a central role. We thus demonstrated that IH boosts the oxidative capacity from fatty acids of liver mitochondria. Lastly, the unbalance between oxidative stress and antioxidant defense is tied to an increase in hepatic ROS production and DNA damage during IH. We provide a comprehensive analysis of liver metabolism during IH and reveal the key role of the mitochondria at the origin of development of liver disease. These findings contribute to the understanding of the mechanisms underlying NAFLD development and progression during SAS and provide a rationale for novel therapeutic targets and biomarker discovery.

7.
Biomedicines ; 10(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35052696

RESUMO

BACKGROUND: Dietary intervention is a cornerstone of weight loss therapies. In obesity, a dysbiotic gut microbiota (GM) is characterized by high levels of Bacteroides lineages and low diversity. We examined the GM composition changes, including the Bacteroides 2 enterotype (Bact2), in a real-world weight loss study in subjects following a high-protein hypocaloric diet with or without a live microorganisms (LMP) supplement. METHOD: 263 volunteers were part of this real-world weight loss program. The first phase was a high-protein low-carbohydrate calorie restriction diet with or without LMP supplements. Fecal samples were obtained at baseline and after 10% weight loss for 163 subjects. Metagenomic profiling was obtained by shotgun sequencing. RESULTS: At baseline, the Bact2 enterotype was more prevalent in subjects with aggravated obesity and metabolic alterations. After weight loss, diversity increased and Bact2 prevalence decreased in subjects with lower GM diversity at baseline, notably in LMP consumers. Significant increases in Akkermansia muciniphila and Parabacteroides distasonis and significant decreases of Eubacterium rectale, Streptococcus thermophilus and Bifidobacterial lineages were observed after weight loss. CONCLUSIONS: Baseline microbiome composition is associated with differential changes in GM diversity and Bact2 enterotype prevalence after weight loss. Examining these signatures could drive future personalized nutrition efforts towards more favorable microbiome compositions.

8.
AIDS ; 35(10): 1625-1630, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33831906

RESUMO

OBJECTIVE: To evaluate the effect on anthropometric, metabolic and adipose tissue parameters of switching ART-controlled persons living with HIV (PLWH) from a protease inhibitor regimen to raltegravir/maraviroc. DESIGN: Sub-study of the ANRS157 ROCnRAL study with the investigation of subcutaneous abdominal adipose tissue (SCAT) biopsy at inclusion and study end. METHODS: We performed lipoaspiration of paired SCAT samples, histology on fresh/fixed samples and examined the transcriptomic profile analyzed using Illumina microarrays after RNA extraction. Statistical analyses used the Wilcoxon-paired test. RESULTS: The patients (n = 8) were mainly male (7/8), aged (mean ±â€Šstandard error of the mean) 54.9 ±â€Š1.2 years, BMI 26.1 ±â€Š1.2 kg/m2, CD4+ 699 ±â€Š56 cells/mm3, all viral load (VL) <50 copies/ml. After a follow-up of 6 ±â€Š0.5 months, all PLWH remained with VL <50 copies/ml. BMI, trunk and limb fat amounts were unchanged yet systemic insulin resistance increased. Adipose tissue histology was unchanged except for borderline increased adipocyte diameter (P = 0.1). Among the 16 094 RNA transcripts, 458 genes were up-regulated and 244 were down-regulated. Analyses of the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases, evaluating modifications in the main functional pathways, revealed that genes related to immune recognition/function were less expressed as were genes encoding T-cell receptor and receptor signaling pathways. The gene expression profiles indicated decreased inflammation but genes involved in adipogenesis and insulin resistance were overexpressed. CONCLUSION: After 6 months of raltegravir/maraviroc, adipogenesis-related gene profile was enhanced in SCAT, in agreement with a tendency for increased adipocyte size. Enhanced SCAT insulin resistance-related profile was concordant with higher systemic insulin resistance. However, the immune activation/inflammation profile was globally lowered. We propose that raltegravir/maraviroc might favor SCAT gain but reduce inflammation/immune activation.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Tecido Adiposo , Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Maraviroc , Raltegravir Potássico/uso terapêutico , Gordura Subcutânea
9.
J Clin Endocrinol Metab ; 106(10): 2991-3006, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34097736

RESUMO

CONTEXT: Unlike homozygous variants, the implication of heterozygous variants on the leptin-melanocortin pathway in severe obesity has not been established. OBJECTIVE: To describe the frequency, the phenotype, and the genotype-phenotype relationship for heterozygous variants in LEP, LEPR, POMC, and PCSK1 in severe obesity. METHODS: In this retrospective study, genotyping was performed on at least 1 of the LEP, LEPR, POMC, and PCSK1 genes in 1486 probands with severe obesity (600 children, 886 adults). The phenotype was collected in 60 subjects with heterozygous variants and 16 with homozygous variants. We analyzed variant frequency, body mass index (BMI), age of obesity onset, food impulsivity, and endocrine abnormalities. RESULTS: The frequency of subjects with homozygous variants was 1.7% (n = 26), and 6.7% (n = 100) with heterozygous variants. Adults with homozygous variants had a higher BMI (66 vs 53 kg/m2, P = .015), an earlier onset of obesity (0.4 vs 5.4 years, P < .001), more often food impulsivity (83% vs 42%, P = .04), and endocrine abnormalities (75% vs 26%, P < .01). The BMI was higher for subjects with high-impact heterozygous variants (61 vs 50 kg/m², P = .045) and those with a second heterozygous variant on the pathway (65 vs 49 kg/m², P < .01). In children, no significant differences were found for the age of obesity onset and BMI. CONCLUSION: Heterozygous variants in LEP, LEPR, POMC, and PCSK1 are frequent in severe obesity and sometimes associated with a phenotype close to that of homozygotes. These data suggest a systematic search for variants in severe early-onset obesity, to discuss therapy that targets this key pathway.


Assuntos
Leptina/genética , Obesidade Mórbida/genética , Pró-Opiomelanocortina/genética , Pró-Proteína Convertase 1/genética , Receptores para Leptina/genética , Adulto , Idade de Início , Índice de Massa Corporal , Criança , Feminino , Estudos de Associação Genética , Variação Genética , Heterozigoto , Homozigoto , Humanos , Masculino , Fenótipo , Estudos Retrospectivos , Transdução de Sinais/genética
10.
Pediatr Obes ; 14(5): e12496, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30702799

RESUMO

BACKGROUND: Many genetic polymorphisms identified by genome-wide association studies for adult body mass index (BMI) have been suggested to regulate food intake. OBJECTIVE: The objective was to study the associations between a genetic obesity risk score, appetitive traits, and growth of children up to age 5 years, with a longitudinal design. METHODS: In 1142 children from the Etude des Déterminants pre et post natals de la santé de l'ENfant (EDEN) birth cohort, a combined obesity risk-allele score (BMI genetic risk score [GRS]) was related to appetitive traits (energy intake up to 12 mo, a single item on appetite from 4 mo to 3 y, a validated appetite score at 5 y) using Poisson regressions with robust standard errors. The potential mediation of appetitive traits on the association between BMI-GRS and growth was assessed by the Sobel test. RESULTS: Children with a high BMI-GRS were more likely to have high energy intake at 1 year and high appetite at 2 and 5 years. High energy intake in infancy and high appetite from 1 year were related to higher subsequent BMI. High 2-year appetite seemed to partially mediate the associations between BMI-GRS and BMI from 2 to 5 years (all P ≤ 0.05). CONCLUSIONS: Genetic susceptibility to childhood obesity seems to be partially explained by appetitive traits in infancy, followed by an early childhood rise in BMI.


Assuntos
Apetite/genética , Desenvolvimento Infantil/fisiologia , Comportamento Alimentar/fisiologia , Obesidade Infantil/genética , Adulto , Alelos , Apetite/fisiologia , Índice de Massa Corporal , Pré-Escolar , Estudos de Coortes , Ingestão de Alimentos , Ingestão de Energia , Feminino , França , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Mães , Gravidez , Estudos Prospectivos , Fatores de Risco
11.
Cell Metab ; 30(4): 754-767.e9, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31422903

RESUMO

Autophagy facilitates the adaptation to nutritional stress. Here, we show that short-term starvation of cultured cells or mice caused the autophagy-dependent cellular release of acyl-CoA-binding protein (ACBP, also known as diazepam-binding inhibitor, DBI) and consequent ACBP-mediated feedback inhibition of autophagy. Importantly, ACBP levels were elevated in obese patients and reduced in anorexia nervosa. In mice, systemic injection of ACBP protein inhibited autophagy, induced lipogenesis, reduced glycemia, and stimulated appetite as well as weight gain. We designed three approaches to neutralize ACBP, namely, inducible whole-body knockout, systemic administration of neutralizing antibodies, and induction of antiACBP autoantibodies in mice. ACBP neutralization enhanced autophagy, stimulated fatty acid oxidation, inhibited appetite, reduced weight gain in the context of a high-fat diet or leptin deficiency, and accelerated weight loss in response to dietary changes. In conclusion, neutralization of ACBP might constitute a strategy for treating obesity and its co-morbidities.


Assuntos
Inibidor da Ligação a Diazepam/metabolismo , Ingestão de Alimentos , Lipogênese , Macroautofagia , Obesidade/metabolismo , Animais , Anorexia Nervosa/metabolismo , Linhagem Celular , Ácidos Graxos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Aumento de Peso , Redução de Peso
12.
Diabetes ; 56(4): 992-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17303805

RESUMO

To define the effects of acute hyperglycemia per se (i.e., without the confounding effect of hyperinsulinemia) in human tissues in vivo, we performed global gene expression analysis using microarrays in vastus lateralis muscle and subcutaneous abdominal adipose tissue of seven healthy men during a hyperglycemic-euinsulinemic clamp with infusion of somatostatin to inhibit endogenous insulin release. We found that doubling fasting blood glucose values while maintaining plasma insulin in the fasting range modifies the expression of 316 genes in skeletal muscle and 336 genes in adipose tissue. More than 80% of them were downregulated during the clamp, indicating a drastic effect of acute high glucose, in the absence of insulin, on mRNA levels in human fat and muscle tissues. Almost all the biological pathways were affected, suggesting a generalized effect of hyperglycemia. The induction of genes from the metallothionein family, related to detoxification and free radical scavenging, indicated that hyperglycemia-induced oxidative stress could be involved in the observed modifications. Because the duration and the concentration of the experimental hyperglycemia were close to what is observed during a postprandial glucose excursion in diabetic patients, these data suggest that modifications of gene expression could be an additional effect of glucose toxicity in vivo.


Assuntos
Tecido Adiposo/fisiologia , Regulação da Expressão Gênica , Hiperglicemia/genética , Músculo Esquelético/fisiologia , Doença Aguda , Adulto , Técnica Clamp de Glucose , Humanos , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Valores de Referência
13.
Front Physiol ; 9: 1958, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30804813

RESUMO

Background: The mechanisms responsible for calorie restriction (CR)-induced improvement in insulin sensitivity (IS) have not been fully elucidated. Greater insight can be achieved through deep biological phenotyping of subjects undergoing CR, and integration of big data. Materials and Methods: An integrative approach was applied to investigate associations between change in IS and factors from host, microbiota, and lifestyle after a 6-week CR period in 27 overweight or obese adults (ClinicalTrials.gov: NCT01314690). Partial least squares regression was used to determine associations of change (week 6 - baseline) between IS markers and lifestyle factors (diet and physical activity), subcutaneous adipose tissue (sAT) gene expression, metabolomics of serum, urine and feces, and gut microbiota composition. ScaleNet, a network learning approach based on spectral consensus strategy (SCS, developed by us) was used for reconstruction of biological networks. Results: A spectrum of variables from lifestyle factors (10 nutrients), gut microbiota (10 metagenomics species), and host multi-omics (metabolic features: 84 from serum, 73 from urine, and 131 from feces; and 257 sAT gene probes) most associated with IS were identified. Biological network reconstruction using SCS, highlighted links between changes in IS, serum branched chain amino acids, sAT genes involved in endoplasmic reticulum stress and ubiquitination, and gut metagenomic species (MGS). Linear regression analysis to model how changes of select variables over the CR period contribute to changes in IS, showed greatest contributions from gut MGS and fiber intake. Conclusion: This work has enhanced previous knowledge on links between host glucose homeostasis, lifestyle factors and the gut microbiota, and has identified potential biomarkers that may be used in future studies to predict and improve individual response to weight-loss interventions. Furthermore, this is the first study showing integration of the wide range of data presented herein, identifying 115 variables of interest with respect to IS from the initial input, consisting of 9,986 variables. Clinical Trial Registration: clinicaltrials.gov (NCT01314690).

14.
Diabetes Care ; 41(8): 1732-1739, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29844096

RESUMO

OBJECTIVE: Nonalcoholic fatty liver disease (i.e., increased intrahepatic triglyceride [IHTG] content), predisposes to type 2 diabetes and cardiovascular disease. Adipose tissue lipolysis and hepatic de novo lipogenesis (DNL) are the main pathways contributing to IHTG. We hypothesized that dietary macronutrient composition influences the pathways, mediators, and magnitude of weight gain-induced changes in IHTG. RESEARCH DESIGN AND METHODS: We overfed 38 overweight subjects (age 48 ± 2 years, BMI 31 ± 1 kg/m2, liver fat 4.7 ± 0.9%) 1,000 extra kcal/day of saturated (SAT) or unsaturated (UNSAT) fat or simple sugars (CARB) for 3 weeks. We measured IHTG (1H-MRS), pathways contributing to IHTG (lipolysis ([2H5]glycerol) and DNL (2H2O) basally and during euglycemic hyperinsulinemia), insulin resistance, endotoxemia, plasma ceramides, and adipose tissue gene expression at 0 and 3 weeks. RESULTS: Overfeeding SAT increased IHTG more (+55%) than UNSAT (+15%, P < 0.05). CARB increased IHTG (+33%) by stimulating DNL (+98%). SAT significantly increased while UNSAT decreased lipolysis. SAT induced insulin resistance and endotoxemia and significantly increased multiple plasma ceramides. The diets had distinct effects on adipose tissue gene expression. CONCLUSIONS: Macronutrient composition of excess energy influences pathways of IHTG: CARB increases DNL, while SAT increases and UNSAT decreases lipolysis. SAT induced the greatest increase in IHTG, insulin resistance, and harmful ceramides. Decreased intakes of SAT could be beneficial in reducing IHTG and the associated risk of diabetes.


Assuntos
Gorduras Insaturadas na Dieta/efeitos adversos , Ácidos Graxos/efeitos adversos , Comportamento Alimentar/fisiologia , Fígado/metabolismo , Monossacarídeos/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/etiologia , Tecido Adiposo/metabolismo , Adulto , Metabolismo dos Carboidratos/fisiologia , Gorduras Insaturadas na Dieta/metabolismo , Ácidos Graxos/metabolismo , Feminino , Humanos , Insulina/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Monossacarídeos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sobrepeso/complicações , Sobrepeso/metabolismo , Triglicerídeos/sangue , Aumento de Peso
15.
Am J Clin Nutr ; 106(4): 996-1004, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28814400

RESUMO

Background: Many genetic variants show highly robust associations with body mass index (BMI). However, the mechanisms through which genetic susceptibility to obesity operates are not well understood. Potentially modifiable mechanisms, including eating behaviors, are of particular interest to public health.Objective: Here we explore whether eating behaviors mediate or modify genetic susceptibility to obesity.Design: Genetic risk scores for BMI (BMI-GRSs) were calculated for 3515 and 2154 adults in the Fenland and EDEN (Etude des déterminants pré et postnatals de la santé et du développement de l'enfant) population-based cohort studies, respectively. The eating behaviors-emotional eating, uncontrolled eating, and cognitive restraint-were measured through the use of a validated questionnaire. The mediating effect of each eating behavior on the association between the BMI-GRS and measured BMI was assessed by using the Sobel test. In addition, we tested for interactions between each eating behavior and the BMI-GRS on BMI.Results: The association between the BMI-GRS and BMI was mediated by both emotional eating (EDEN: P-Sobel = 0.01; Fenland: P-Sobel = 0.02) and uncontrolled eating (EDEN: P-Sobel = 0.04; Fenland: P-Sobel = 0.0006) in both sexes combined. Cognitive restraint did not mediate this association (P-Sobel > 0.10), except among EDEN women (P-Sobel = 0.0009). Cognitive restraint modified the relation between the BMI-GRS and BMI among men (EDEN: P-interaction = 0.0001; Fenland: P-interaction = 0.04) and Fenland women (P-interaction = 0.0004). By tertiles of cognitive restraint, the association between the BMI-GRS and BMI was strongest in the lowest tertile of cognitive restraint, and weakest in the highest tertile.Conclusions: Genetic susceptibility to obesity was partially mediated by the "appetitive" eating behavior traits (uncontrolled and emotional eating) and, in 3 of the 4 population groups studied, was modified by cognitive restraint. High levels of cognitive control over eating appear to attenuate the genetic susceptibility to obesity. Future research into interventions designed to support restraint may help to protect genetically susceptible individuals from weight gain.


Assuntos
Cognição , Ingestão de Alimentos/psicologia , Emoções , Comportamento Alimentar , Interação Gene-Ambiente , Obesidade/etiologia , Autocontrole , Adulto , Apetite , Índice de Massa Corporal , Comportamento Alimentar/psicologia , Feminino , Predisposição Genética para Doença , Humanos , Hiperfagia/complicações , Hiperfagia/psicologia , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/psicologia , Fatores de Risco , Fatores Sexuais , Inquéritos e Questionários
16.
Cell Metab ; 25(3): 673-685, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28215843

RESUMO

Obesity-induced white adipose tissue (WAT) fibrosis is believed to accelerate WAT dysfunction. However, the cellular origin of WAT fibrosis remains unclear. Here, we show that adipocyte platelet-derived growth factor receptor-α-positive (PDGFRα+) progenitors adopt a fibrogenic phenotype in obese mice prone to visceral WAT fibrosis. More specifically, a subset of PDGFRα+ cells with high CD9 expression (CD9high) originates pro-fibrotic cells whereas their CD9low counterparts, committed to adipogenesis, are almost completely lost in the fibrotic WAT. PDGFRα pathway activation promotes a phenotypic shift toward PDGFRα+CD9high fibrogenic cells, driving pathological remodeling and altering WAT function in obesity. These findings translated to human obesity as the frequency of CD9high progenitors in omental WAT (oWAT) correlates with oWAT fibrosis level, insulin-resistance severity, and type 2 diabetes. Collectively, our data demonstrate that in addition to representing a WAT adipogenic niche, different PDGFRα+ cell subsets modulate obesity-induced WAT fibrogenesis and are associated with loss of metabolic fitness.


Assuntos
Adipócitos/patologia , Tecido Adiposo/patologia , Obesidade/metabolismo , Obesidade/patologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Células-Tronco/metabolismo , Tetraspanina 29/metabolismo , Adipogenia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Adulto , Animais , Peso Corporal , Epididimo/metabolismo , Fibrose , Homeostase , Humanos , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Obesidade/fisiopatologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais
17.
Diabetes ; 54(8): 2277-86, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16046292

RESUMO

In human obesity, the stroma vascular fraction (SVF) of white adipose tissue (WAT) is enriched in macrophages. These cells may contribute to low-grade inflammation and to its metabolic complications. Little is known about the effect of weight loss on macrophages and genes involved in macrophage attraction. We examined subcutaneous WAT (scWAT) of 7 lean and 17 morbidly obese subjects before and 3 months after bypass surgery. Immunomorphological changes of the number of scWAT-infiltrating macrophages were evaluated, along with concomitant changes in expression of SVF-overexpressed genes. The number of scWAT-infiltrating macrophages before surgery was higher in obese than in lean subjects (HAM56+/CD68+; 22.6 +/- 4.3 vs. 1.4 +/- 0.6%, P < 0.001). Typical "crowns" of macrophages were observed around adipocytes. Drastic weight loss resulted in a significant decrease in macrophage number (-11.63 +/- 2.3%, P < 0.001), and remaining macrophages stained positive for the anti-inflammatory protein interleukin 10. Genes involved in macrophage attraction (monocyte chemotactic protein [MCP]-1, plasminogen activator urokinase receptor [PLAUR], and colony-stimulating factor [CSF]-3) and hypoxia (hypoxia-inducible factor-1alpha [HIF-1alpha]), expression of which increases in obesity and decreases after surgery, were predominantly expressed in the SVF. We show that improvement of the inflammatory profile after weight loss is related to a reduced number of macrophages in scWAT. MCP-1, PLAUR, CSF-3, and HIF-1alpha may play roles in the attraction of macrophages in scWAT.


Assuntos
Tecido Adiposo/patologia , Fatores Quimiotáticos/genética , Macrófagos/patologia , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Redução de Peso , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/metabolismo , Adulto , Anastomose em-Y de Roux , Quimiocina CCL2/genética , Proteínas de Ligação a DNA/genética , Feminino , Filgrastim , Derivação Gástrica , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos/genética , Humanos , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Obesidade Mórbida/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Superfície Celular/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Proteínas Recombinantes , Fatores de Transcrição/genética
18.
FASEB J ; 19(11): 1540-2, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15985526

RESUMO

The molecular mechanisms by which obesity increases the risk of cardiovascular diseases are poorly understood. The purpose of this study was to identify candidate biomarkers overexpressed in adipose tissue of obese subjects that could link expanded fat mass to atherosclerosis. We compared gene expression profile in subcutaneous adipose tissue (scWAT) of 28 obese and 11 lean subjects using microarray technology. This analysis identified 240 genes significantly overexpressed in scWAT of obese subjects. The genes were then ranked according to the correlation between gene expression and body mass index (BMI). In this list, the elastolytic cysteine protease cathepsin S was among the highly correlated genes. RT-PCR and Western blotting confirmed the increase in cathepsin S mRNA (P=0.006) and protein (P<0.05) in obese scWAT. The circulating concentrations of cathepsin S were also significantly higher in obese than in nonobese subjects (P<0.0001). Both cathepsin S mRNA in scWAT and circulating levels were positively correlated with BMI, body fat, and plasma triglyceride levels. In addition, we show that the proinflammatory factors, lipopolysaccharide, interleukin-1beta, and tumor necrosis factor-alpha increase cathepsin S secretion in human scWAT explants. This study identifies cathepsin S as a novel marker of adiposity. Since this enzyme has been implicated in the development of atherosclerotic lesions, we propose that cathepsin S represents a molecular link between obesity and atherosclerosis.


Assuntos
Tecido Adiposo/metabolismo , Adiposidade , Aterosclerose/etiologia , Catepsinas/genética , Adipócitos/metabolismo , Biomarcadores , Catepsinas/biossíntese , Catepsinas/sangue , Proteínas da Matriz Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Músculo Liso Vascular/química , Obesidade/complicações , Obesidade/metabolismo , RNA Mensageiro/análise
19.
J Clin Endocrinol Metab ; 101(1): 293-304, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26583585

RESUMO

CONTEXT: Extracellular matrix (ECM) in sc adipose tissue (scAT) undergoes pathological remodeling during obesity. However, its evolution during weight loss remains poorly explored. OBJECTIVE: The objective of the investigation was to study the histological, transcriptomic, and physical characteristics of scAT ECM remodeling during the first year of bariatric surgery (BS)-induced weight loss and their relationships with metabolic and bioclinical improvements. DESIGN, SETTING, PATIENTS, AND INTERVENTIONS: A total of 118 morbidly obese candidates for BS were recruited and followed up during 1 year after BS. MAIN OUTCOME MEASURES: scAT surgical biopsy and needle aspiration as well as scAT stiffness measurement were performed in three subgroups before and after BS. Fourteen nonobese, nondiabetic subjects served as controls. RESULTS: Significantly increased picrosirius-red-stained collagen accumulation in scAT after BS was observed along with fat mass loss, despite metabolic and inflammatory improvements and undetectable changes of scAT stiffness. Collagen accumulation positively associated with M2-macrophages (CD163(+) cells) before BS but negatively afterward. Expression levels of genes encoding ECM components (eg, COL3A1, COL6A1, COL6A2, ELN), cross-linking enzymes (eg, lysyl oxidase [LOX], LOXL4, transglutaminase), metalloproteinases, and their inhibitors were modified 1 year after BS. LOX expression and protein were significantly decreased and associated with decreased fat mass as well as other cross-linking enzymes. Although total collagen I and VI staining decreased 1 year after BS, we found increased degraded collagen I and III in scAT, suggesting increased degradation. CONCLUSIONS: After BS-induced weight loss and related metabolic improvements, scAT displays major collagen remodeling with an increased picrosirius-red staining that relates to increased collagen degradation and importantly decreased cross-linking. These features are in agreement with adequate ECM adaptation during fat mass loss.


Assuntos
Cirurgia Bariátrica , Colágeno/metabolismo , Gordura Subcutânea/metabolismo , Adulto , Composição Corporal , Técnicas de Imagem por Elasticidade , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/metabolismo , Obesidade Mórbida/cirurgia , Transcriptoma , Rigidez Vascular , Redução de Peso
20.
FASEB J ; 18(14): 1657-69, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15522911

RESUMO

Adipose tissue produces inflammation and immunity molecules suspected to be involved in obesity-related complications. The pattern of expression and the nutritional regulation of these molecules in humans are poorly understood. We analyzed the gene expression profiles of subcutaneous white adipose tissue from 29 obese subjects during very low calorie diet (VLCD) using cDNA microarray and reverse transcription quantitative PCR. The patterns of expression were compared with that of 17 non-obese subjects. We determined whether the regulated genes were expressed in adipocytes or stromavascular fraction cells. Gene expression profiling identified 100 inflammation-related transcripts that are regulated in obese individuals when eating a 28 day VLCD but not a 2 day VLCD. Cluster analysis showed that the pattern of gene expression in obese subjects after 28 day VLCD was closer to the profile of lean subjects than to the pattern of obese subjects before VLCD. Weight loss improves the inflammatory profile of obese subjects through a decrease of proinflammatory factors and an increase of anti-inflammatory molecules. The genes are expressed mostly in the stromavascular fraction of adipose tissue, which is shown to contain numerous macrophages. The beneficial effect of weight loss on obesity-related complications may be associated with the modification of the inflammatory profile in adipose tissue.


Assuntos
Tecido Adiposo/metabolismo , Restrição Calórica , Mediadores da Inflamação/metabolismo , Obesidade/dietoterapia , Obesidade/genética , Redução de Peso/genética , Adulto , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-10/biossíntese , Interleucina-10/genética , Obesidade/imunologia , Sialoglicoproteínas/biossíntese , Sialoglicoproteínas/genética , Redução de Peso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA