Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 203: 110979, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678758

RESUMO

Recent EFSA (European Food Safety Authority) reports highlighted that the ecological risk assessment of pesticides needed to go further by taking more into account the impacts of chemicals on biodiversity under field conditions. We assessed the effects of two commercial formulations of fungicides separately and in mixture, i.e., Cuprafor Micro® (containing 500 g kg-1 copper oxychloride) at 4 (C1, corresponding to 3.1 mg kg-1 dry soil of copper) and 40 kg ha-1 (C10), and Swing® Gold (50 g L-1 epoxiconazole EPX and 133 g L-1 dimoxystrobin DMX) at one (D1, 5.81 10-2 and 1.55 10-1 mg kg-1 dry soil of EPX and DMX, respectively) and ten times (D10) the recommended field rate, on earthworms at 1, 6, 12, 18 and 24 months after the application following the international ISO standard no. 11268-3 to determine the effects on earthworms in field situations. The D10 treatment significantly reduced the species diversity (Shannon diversity index, 54% of the control), anecic abundance (29% of the control), and total biomass (49% of the control) over the first 18 months of experiment. The Shannon diversity index also decreased in the mixture treatment (both fungicides at the recommended dose) at 1 and 6 months after the first application (68% of the control at both sampling dates), and in C10 (78% of the control) at 18 months compared with the control. Lumbricus terrestris, Aporrectodea caliginosa, Aporrectodea giardi, Aporrectodea longa, and Allolobophora chlorotica were (in decreasing order) the most sensitive species to the tested fungicides. This study not only addressed field ecotoxicological effects of fungicides at the community level and ecological recovery, but it also pinpointed some methodological weaknesses (e.g., regarding fungicide concentrations in soil and statistics) of the guideline to determine the effects on earthworms in field situations.


Assuntos
Cobre/toxicidade , Monitoramento Ambiental/métodos , Compostos de Epóxi/toxicidade , Fungicidas Industriais/toxicidade , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Triazóis/toxicidade , Animais , Biodiversidade , Biomassa , Cobre/análise , Ecotoxicologia , Compostos de Epóxi/análise , Fungicidas Industriais/análise , Oligoquetos/crescimento & desenvolvimento , Medição de Risco , Solo/química , Poluentes do Solo/análise , Triazóis/análise
2.
Ecotoxicol Environ Saf ; 181: 518-524, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31234066

RESUMO

The use of pesticides in agroecosystems can have negative effects on earthworms, which play key roles in soil functioning such as organic matter decomposition. The aim of this study was to assess the effects of two fungicides (Cuprafor micro®, composed of copper oxychloride, and Swing Gold®, composed of epoxiconazole (EPX) and dimoxystrobin (DMX)) on earthworm reproduction by exposing adults and cocoons. First, adult Aporrectodea caliginosa individuals were exposed for 28 days to 3.33, 10 and 30 times the recommended dose (RD) of Cuprafor micro® corresponding to 25.8, 77.5 and 232.5 mg kg-1 dry soil of copper, respectively, and 0.33, 1 and 3 times the RD of Swing Gold® (corresponding to 5.2 × 10-2 mg DMX kg-1 + 1.94 × 10-2 mg EPX kg-1, 1.55 × 10-1 mg DMX kg-1 + 5.81 × 10-2 mg EPX kg-1 and 4.62 × 10-1 mg DMX kg-1 + 1.74 × 10-1 mg EPX kg-1 respectively), in addition to a control soil with no fungicide treatment. Cocoon variables (production, weight, hatching success, hatching time) were monitored. Second, "naïve" cocoons produced by uncontaminated earthworms were exposed to soils contaminated by the same concentrations of the two fungicides, and we assessed hatching success and hatching time. In the first experiment, cocoon production was halved at the highest copper concentration (232.5 mg Cu kg-1 of dry soil) as compared to the control. Cocoons took 5 more days to hatch, and the hatching success decreased by 35% as compared to the control. In the Swing Gold® treatments, cocoon production was reduced by 63% at 3 times the RD, and the hatching success significantly decreased by 16% at the RD. In the second experiment, only the hatching success of cocoons was impacted by Swing Gold® at 3 times the RD (30% less hatching). It is concluded that the cocoon stock in the soil is crucial for the renewal of populations in the field. The most sensitive endpoint was the hatching success of the cocoons produced by exposed adults. This endpoint and the effects observed on the "naïve" cocoons could be taken into account in pesticide risk assessment.


Assuntos
Biomarcadores Ambientais/fisiologia , Fungicidas Industriais/toxicidade , Oligoquetos/fisiologia , Poluentes do Solo/toxicidade , Animais , Cobre/toxicidade , Compostos de Epóxi/toxicidade , Oligoquetos/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Medição de Risco/métodos , Solo/química , Poluentes do Solo/análise , Triazóis/toxicidade
3.
Anal Bioanal Chem ; 410(20): 5009-5018, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29862430

RESUMO

Agricultural intensification, and in particular the use of pesticides, leads over the years to a loss of biodiversity and a decline of ecosystem services in cultivated zones and agricultural landscapes. Among the animal communities involved in the functioning of agro-ecosystems, earthworms are ubiquitous and recognized as indicators of land uses and cultural practices. However, little data is available on the levels of pesticides in such organisms in natura, which would allow estimating their actual exposure and the potentially resulting impacts. Thus, the objective of this study was to develop a sensitive analytical methodology to detect and quantify 27 currently used pesticides in earthworms (Allolobophora chlorotica). A modified QuEChERS extraction was implemented on individual earthworms. This step was followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The whole analytical method was validated on spiked earthworm blank samples, with regard to linearity (from 1 to 100 method limit of quantification, r2 > 0.95), intra-day precision (relative standard deviation (RSD) < 15%), inter-day precision (RSD < 20%), recoveries (mainly in the range 70-110%), and limits of detection and of quantification (inferior to 5 ng/g for most of the pesticides). The developed method was successfully applied to determine the concentrations of pesticides in nine individuals collected in natura. Up to five of the selected pesticides have been detected in one individual. Graphical abstract.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Oligoquetos/química , Resíduos de Praguicidas/análise , Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Animais , Limite de Detecção , Extração em Fase Sólida/métodos
4.
Ecotoxicology ; 27(3): 300-312, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29404867

RESUMO

Because of the wide use of pesticides in agriculture, there is still a need of higher-tier field studies to assess ecotoxicological effects of commercial formulations on a wider variety of non-target soil organisms such as soil annelids. We here tested the effects of different concentrations of two fungicide formulations, i.e., Cuprafor Micro® (composed of 500 g kg-1 copper oxychloride) and Swing Gold® (composed of 50 g l-1 epoxiconazole and 133 g l-1 dimoxystrobin) on two families of terrestrial oligochaetes (Lumbricidae and Enchytraeidae) after 1 month of exposure. We also assessed the feeding activity of soil organisms using the bait lamina method. Along with the feeding activity, the enchytraeid density, diversity and communities were not different in the control and the contaminated plots. By contrast, epigeic earthworms were absent and earthworm diversity and densities of anecic species decreased significantly in the plots contaminated at ten times the recommended dose of the Swing Gold® formulation. The copper fungicide (at 0.75 and 7.5 kg Cu ha-1) and the treatment with the pesticide mixture (Cuprafor Micro® at 0.75 kg Cu ha-1 and Swing Gold® at the recommended dose) did not affect Oligochaeta communities compared with the control, except the Shannon index for earthworms in the mixture of both fungicides. Responses of the two annelid families to the tested pesticides were different with higher effects observed on the diversity and the community structure of earthworms compared with enchytraeids. This study allowed detecting early changes on oligochaete populations after pesticide application.


Assuntos
Cobre/toxicidade , Monitoramento Ambiental/métodos , Compostos de Epóxi/toxicidade , Fungicidas Industriais/toxicidade , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Triazóis/toxicidade , Animais , Biodiversidade , Relação Dose-Resposta a Droga , França , Densidade Demográfica
5.
Ecotoxicol Environ Saf ; 140: 177-184, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28260682

RESUMO

The use of pesticides in crop fields may have negative effects on soil Oligochaeta Annelida, i.e., earthworms and enchytraeids, and thus affect soil quality. The aim of this study was to assess the effects of two commercial fungicide formulations on the earthworm Aporrectodea caliginosa and the enchytraeid Enchytraeus albidus in a natural soil. The fungicides were Cuprafor micro® (copper oxychloride), commonly used in organic farming, and Swing Gold® (epoxiconazole and dimoxystrobin), a synthetic fungicide widely used in conventional farming to protect cereal crops. Laboratory experiments were used to assess the survival, biomass loss and avoidance behaviour. No lethal effect was observed following exposure to the copper fungicide for 14 days, even at 5000mgkg-1 of copper, i.e. 650 times the recommended dose (RD). However, a significant decrease in biomass was observed from 50mgkg-1 of copper (6.5 times the RD) for A. caliginosa and at 5000mgkg-1 of copper (650 times the RD) for E. albidus. These sublethal effects suggest that a longer period of exposure would probably have led to lethal effects. The EC50 avoidance for the copper fungicide was estimated to be 51.2mgkg-1 of copper (6.7 times the RD) for A. caliginosa, and 393mgkg-1 of copper (51 times the RD) for E. albidus. For the Swing Gold® fungicide, the estimated LC50 was 7.0 10-3mLkg-1 (6.3 times the RD) for A. caliginosa and 12.7 10-3mLkg-1 (11.0 times the RD) for E. albidus. No effect on biomass or avoidance was observed at sublethal concentrations of this synthetic fungicide. It was concluded that enchytraeids were less sensitive than earthworms to the two commercial fungicides in terms of mortality, biomass loss and avoidance behaviour. Therefore we discuss the different strategies possibly used by the two Oligochaeta species to cope with the presence of the pesticides were discussed, along with the potential consequences on the soil functions.


Assuntos
Fungicidas Industriais/toxicidade , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Agricultura , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Biomassa , Cobre/análise , Cobre/farmacologia , Cobre/toxicidade , Compostos de Epóxi/análise , Compostos de Epóxi/farmacologia , Compostos de Epóxi/toxicidade , Fungicidas Industriais/análise , Fungicidas Industriais/farmacologia , Dose Letal Mediana , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/farmacologia , Testes de Toxicidade Aguda , Triazóis/análise , Triazóis/farmacologia , Triazóis/toxicidade
6.
Ecotoxicology ; 26(10): 1378-1391, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29022159

RESUMO

Biochars are used as amendments to improve soil quality, but their effects on edaphic organisms such as earthworms remain controversial. This study aimed to assess the effects of adding a poultry manure-derived biochar into a contaminated technosol on trace element (TE) (i.e. As, Cd, Cu, Pb, and Zn) bioavailability for two earthworm species, Aporrectodea icterica and Aporrectodea longa. Three components of the bioavailability concept were determined using a pot experiment: (1) total soil TE (potentially reactive) and TE concentrations in the soil pore water (environmental availability), (2) TE concentrations in depurated whole earthworm bodies (environmental bioavailability) and (3) ecophysiological and biochemical effects on earthworms (toxicological bioavailability). Biochar addition increased TE concentrations in the soil pore water respectively from 1.8, 2.7, 9.4, 0.7 and 959 to 6, 6.2, 19.3, 6.9, and 3003 µg L-1 for As, Cd, Cu, Pb and Zn. Biochar addition did not influence TE environmental bioavailability for earthworms, except a decreased As concentration (32.5 to 15.2 µg g-1) in A. icterica. This suggests an inter-specific variability in As homeostasis in the Aporrectodea genus. In line with this internal As decrease, the Glutathione-S-transferase (GST) activity decreased by 42% and protein and lipid contents slightly increased (14 and 25%, respectively) in A. icterica tissues. The body weight of both earthworm species decreased for the biochar-amended soil. Environmental TE availability depended on both the biochar addition and the earthworm activity in the contaminated soil, while environmental and toxicological bioavailabilities resulted from the earthworm species, the targeted TE and biochar supply to the soil.


Assuntos
Oligoquetos/fisiologia , Poluentes do Solo/toxicidade , Solo/química , Oligoelementos/análise , Animais , Carvão Vegetal , Oligoquetos/efeitos dos fármacos , Oligoelementos/metabolismo
7.
J Environ Manage ; 136: 54-61, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24561236

RESUMO

Changes in forest cover in agricultural landscapes affect biodiversity. Its management needs some indications about scale to predict occurrence of populations and communities. In this study we considered a forest cover index to predict bird species and community patterns in agricultural landscapes in south-western France. We used generalized linear models for that purpose with prediction driven by wooded areas' spatial distribution at nine different radii. Using 1064 point counts, we modelled the distribution of 10 bird species whose habitat preferences are spread along a landscape opening gradient. We also modelled the distribution of species richness for farmland species and for forest species. We used satellite images to construct a 'wood/non-wood' map and calculated a forest index, considering the surface area of wooded areas at nine radii from 110m to 910m. The models' predictive quality was determined by the AUC (for predicted presences) and ρ (for predicted species richness) criteria. We found that the forest cover was a good predictor of the distribution of seven bird species in agricultural landscapes (mean AUC for the seven species = 0.74 for the radius 110m). Species richness of farmland and forest birds was satisfactorily predicted by the models (ρ = 0.55 and 0.49, respectively, for the radius 110m). The presence of the studied species and species richness metrics were better predicted at smaller scales (i.e. radii between 110 m and 310 m) within the range tested. These results have implications for bird population management in agricultural landscapes since better pinpointing the scale to predict species distributions will enhance targeting efforts to be made in terms of landscape management.


Assuntos
Agricultura , Biodiversidade , Aves/classificação , Animais , Florestas , França
8.
Environ Sci Pollut Res Int ; 31(10): 16076-16084, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240972

RESUMO

The widespread use of copper-based pesticides, while effective in controlling plant diseases, has been identified as a major source of copper contamination in soils. This raises concerns about potential adverse effects on earthworms, key players in soil health and ecosystem function. To inform sustainable pesticide practices, this study aimed to establish copper toxicity thresholds for earthworm avoidance in agricultural soils impacted by copper-based pesticides. We collected 40 topsoil samples (0-5 cm) from orchards and vineyards in the O'Higgins Region of central Chile, and 10 additional soils under native vegetation as background references. A standardized avoidance bioassay using Eisenia fetida assessed the impact of copper-based pesticides on the soils. Total copper concentrations ranged between 23 and 566 mg kg-1, with observed toxic effects on earthworms in certain soils. The effective concentration at 50% (EC50) for total soil copper, determined by Eisenia fetida's avoidance response, was 240 mg kg-1, with a 95% confidence interval of 193-341 mg kg-1. We further compared our EC50 values with existing data from agricultural soils impacted by mining activities. Interestingly, the results revealed a remarkable similarity between the thresholds for earthworm avoidance, regardless of the source of copper contamination. This observation underscores the universality of copper toxicity in agricultural ecosystems and its potential impact on soil biota. This study provides novel insights into copper toxicity thresholds for earthworms in real-world, pesticide-contaminated soils.


Assuntos
Oligoquetos , Praguicidas , Animais , Praguicidas/toxicidade , Cobre/toxicidade , Ecossistema , Solo
9.
Integr Environ Assess Manag ; 20(3): 780-793, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37563990

RESUMO

The European environmental risk assessment (ERA) of plant protection products follows a tiered approach. The approach for soil invertebrates currently consists of two steps, starting with a Tier 1 assessment based on reproduction toxicity tests with earthworms, springtails, and predatory mites. In case an unacceptable risk is identified at Tier 1, field studies can be conducted as a higher-tier option. For soil invertebrates, intermediate tiers are not implemented. Hence, there is limited possibility to include additional information for the ERA to address specific concerns when the Tier 1 fails, as an alternative to, for example, a field study. Calibrated intermediate-tier approaches could help to address risks for soil invertebrates with less time and resources but also with sufficient certainty. A multistakeholder workshop was held on 2-4 March 2022 to discuss potential intermediate-tier options, focusing on four possible areas: (1) natural soil testing, (2) single-species tests (other than standard species), (3) assessing recovery in laboratory tests, and (4) the use of assembled soil multispecies test systems. The participants acknowledged a large potential in the intermediate-tier options but concluded that some issues need to be clarified before routine application of these approaches in the ERA is possible, that is, sensitivity, reproducibility, reliability, and standardization of potential new test systems. The definition of suitable assessment factors needed to calibrate the approaches to the protection goals was acknowledged. The aims of the workshop were to foster scientific exchange and a data-driven dialog, to discuss how the different approaches could be used in the risk assessment, and to identify research priorities for future work to address uncertainties and strengthen the tiered approach in the ERA for soil invertebrates. This article outlines the background, proposed methods, technical challenges, difficulties and opportunities in the ERA, and conclusions of the workshop. Integr Environ Assess Manag 2024;20:780-793. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

10.
Artigo em Inglês | MEDLINE | ID: mdl-38324154

RESUMO

Copper-based plant protection products (PPPs) are widely used in both conventional and organic farming, and to a lesser extent for non-agricultural maintenance of gardens, greenspaces, and infrastructures. The use of copper PPPs adds to environmental contamination by this trace element. This paper aims to review the contribution of these PPPs to the contamination of soils and waters by copper in the context of France (which can be extrapolated to most of the European countries), and the resulting impacts on terrestrial and aquatic biodiversity, as well as on ecosystem functions. It was produced in the framework of a collective scientific assessment on the impacts of PPPs on biodiversity and ecosystem services in France. Current science shows that copper, which persists in soils, can partially transfer to adjacent aquatic environments (surface water and sediment) and ultimately to the marine environment. This widespread contamination impacts biodiversity and ecosystem functions, chiefly through its effects on phototrophic and heterotrophic microbial communities, and terrestrial and aquatic invertebrates. Its effects on other biological groups and biotic interactions remain relatively under-documented.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38035873

RESUMO

Glyphosate is the most widely applied herbicide worldwide, contaminating water, soils, and living organisms. Earthworms are emblematic soil organisms used as indicators of soil quality, but knowledge about the impacts of glyphosate and glyphosate-based herbicides (GBH) on these key soil organisms is scattered. Here, we examine this knowledge in detail to answer four questions: (1) Which endpoint is the most sensitive when assessing the effects of glyphosate or GBH in earthworms? (2) Which is most toxic to earthworms: glyphosate or GBH? (3) Are glyphosate and GBH harmful to earthworms when used at the recommended application dose? (4) What are the interactions between glyphosate or GBH and other chemicals in earthworms? The results indicate that a weak legislation led to improper assessment of the ecotoxicity of glyphosate during the last renewal in 2017. Our findings also highlighted that negative effects can occur in earthworms at the recommended application rate, although not after only a single application or when considering only the mortality of adult individuals. However, under more realistic conditions, that is, when assessing sensitive endpoints (e.g., reproduction, growth) and using species present in the field, after several applications per year, the negative effects of glyphosate or GBH on earthworms were observed at the subindividual, individual, population, and community levels, as well as on earthworm-mediated functions. Our recommendations are as follows: (i) competent agencies should collect more information on the toxicity of these compounds to earthworms before the next renewal deadline, with emphasis on the use of the updated legislation on the topic, and (ii) scientists should increase research on the effects of these herbicides on soil invertebrate species, with emphasis on earthworms, using guideline tests and obtain data from long-term field testing. Integr Environ Assess Manag 2023;00:1-7. © 2023 SETAC.

12.
Environ Sci Pollut Res Int ; 30(7): 17472-17486, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36197613

RESUMO

While long-term organic fertilizer (OF) applications tend to decrease copper (Cu) and zinc (Zn) availability in agricultural soils, earthworm bioturbation has been reported to have the opposite effect. Thus, the consequences of OF amendments in earthworm-inhabited soils on Cu and Zn bioavailability to earthworms are still under debate. Here, we assessed the effect of a decade of agronomically realistic OF applications on Cu and Zn availability in earthworm-inhabited soils and the consequences on Cu and Zn bioavailability to earthworms. An epi-endogeic species (Dichogaster saliens) was exposed in microcosms to three field-collected soils that had received either no, mineral, or organic fertilization for a decade. Dissolved organic matter (DOM) properties (i.e., concentration, aromaticity, and binding properties toward Cu), pH, and Cu and Zn availability (i.e., total concentration and free ionic activity) were determined in the solution of the soil containing earthworms. Cu and Zn bioavailability was assessed by measuring the net accumulation (ng) and concentration of Cu and Zn in earthworms (mg kg-1). Despite soil Cu and Zn contamination induced by a decade of OF applications, organic fertilization induced an increase in soil pH and DOM properties that drove the reduction of Cu and Zn availability in earthworm-inhabited soils, while bioturbation had little effect on soil pH, DOM properties, and Cu and Zn availability. Consistently, Cu and Zn bioavailability to earthworms did not increase with OF applications. From an ecotoxicological perspective, our results suggest that agronomically realistic applications of OF for a decade should not pose a risk to earthworms in terms of Cu and Zn net accumulation, but further studies have to be undertaken to understand consequent long-term toxicity after exposure.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Cobre/química , Zinco/metabolismo , Solo/química , Disponibilidade Biológica , Poluentes do Solo/análise , Matéria Orgânica Dissolvida , Fertilização
13.
Integr Environ Assess Manag ; 19(1): 254-271, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35703133

RESUMO

Before plant protection product (PPP) marketing authorization, a risk assessment for nontarget soil organisms (e.g., earthworms) is required as part of Regulation (EC) No. 1107/2009. Following a stepwise approach, higher tier earthworm field studies are needed if they cannot demonstrate low long-term risk based on laboratory studies. The European guidance for terrestrial ecotoxicology refers to ISO guideline 11268-3 as a standard to conduct earthworm field studies. Assessment of such studies may be challenging, as no European harmonized guidance is available to properly analyze the accuracy, representativeness, and appropriateness of experimental designs, as well as the statistical analysis robustness of results and their scientific reliability. Following the ISO guideline 11268-3, a field study was performed in 2016-2017 (Versailles, France). An assessment of the first year of this field study was performed in agreement with the quality criteria provided in 2006 in the guidance document published by de Jong and collaborators and recommendations by Kula and collaborators that allows describing the protocol and results of earthworm field studies. Not only did we underline the importance of a detailed analysis of raw data on the effects of pesticides on earthworms in field situations, but we also provided recommendations to harmonize protocols for assessing higher tier field studies devoted to earthworms to advance a better assessment of PPP fate and ecotoxicity. In particular, we provided practical field observations related to the study design, pesticide applications, and earthworm sampling. Concurrently, in addition to the conventional earthworm community study, we propose carrying out an assessment of soil function (i.e., organic matter decomposition, soil structuration, etc.) and calculating diversity indices to obtain information about earthworm community dynamics after the application of PPPs. Finally, through field observations, any relevant observation of external and/or internal recovery should be reported. Integr Environ Assess Manag 2023;19:254-271. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Oligoquetos , Praguicidas , Animais , Oligoquetos/fisiologia , Reprodutibilidade dos Testes , Praguicidas/toxicidade , Medição de Risco , Solo
14.
Artigo em Inglês | MEDLINE | ID: mdl-38036909

RESUMO

Neonicotinoids are the most widely used class of insecticides in the world, but they have raised numerous concerns regarding their effects on biodiversity. Thus, the objective of this work was to do a critical review of the contamination of the environment (soil, water, air, biota) by neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid, thiamethoxam) and of their impacts on terrestrial and aquatic biodiversity. Neonicotinoids are very frequently detected in soils and in freshwater, and they are also found in the air. They have only been recently monitored in coastal and marine environments, but some studies already reported the presence of imidacloprid and thiamethoxam in transitional or semi-enclosed ecosystems (lagoons, bays, and estuaries). The contamination of the environment leads to the exposure and to the contamination of non-target organisms and to negative effects on biodiversity. Direct impacts of neonicotinoids are mainly reported on terrestrial invertebrates (e.g., pollinators, natural enemies, earthworms) and vertebrates (e.g., birds) and on aquatic invertebrates (e.g., arthropods). Impacts on aquatic vertebrate populations and communities, as well as on microorganisms, are less documented. In addition to their toxicity to directly exposed organisms, neonicotinoid induce indirect effects via trophic cascades as demonstrated in several species (terrestrial and aquatic invertebrates). However, more data are needed to reach firmer conclusions and to get a clearer picture of such indirect effects. Finally, we identified specific knowledge gaps that need to be filled to better understand the effects of neonicotinoids on terrestrial, freshwater, and marine organisms, as well as on ecosystem services associated with these biotas.

15.
Artigo em Inglês | MEDLINE | ID: mdl-37099095

RESUMO

Preservation of biodiversity and ecosystem services is critical for sustainable development and human well-being. However, an unprecedented erosion of biodiversity is observed and the use of plant protection products (PPP) has been identified as one of its main causes. In this context, at the request of the French Ministries responsible for the Environment, for Agriculture and for Research, a panel of 46 scientific experts ran a nearly 2-year-long (2020-2022) collective scientific assessment (CSA) of international scientific knowledge relating to the impacts of PPP on biodiversity and ecosystem services. The scope of this CSA covered the terrestrial, atmospheric, freshwater, and marine environments (with the exception of groundwater) in their continuity from the site of PPP application to the ocean, in France and French overseas territories, based on international knowledge produced on or transposable to this type of context (climate, PPP used, biodiversity present, etc.). Here, we provide a brief summary of the CSA's main conclusions, which were drawn from about 4500 international publications. Our analysis finds that PPP contaminate all environmental matrices, including biota, and cause direct and indirect ecotoxicological effects that unequivocally contribute to the decline of certain biological groups and alter certain ecosystem functions and services. Levers for action to limit PPP-driven pollution and effects on environmental compartments include local measures from plot to landscape scales and regulatory improvements. However, there are still significant gaps in knowledge regarding environmental contamination by PPPs and its effect on biodiversity and ecosystem functions and services. Perspectives and research needs are proposed to address these gaps.

16.
Environ Sci Pollut Res Int ; 29(29): 43448-43500, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35391640

RESUMO

A wide diversity of plant protection products (PPP) is used for crop protection leading to the contamination of soil, water, and air, which can have ecotoxicological impacts on living organisms. It is inconceivable to study the effects of each compound on each species from each compartment, experimental studies being time consuming and cost prohibitive, and animal testing having to be avoided. Therefore, numerous models are developed to assess PPP ecotoxicological effects. Our objective was to provide an overview of the modeling approaches enabling the assessment of PPP effects (including biopesticides) on the biota. Six categories of models were inventoried: (Q)SAR, DR and TKTD, population, multi-species, landscape, and mixture models. They were developed for various species (terrestrial and aquatic vertebrates and invertebrates, primary producers, micro-organisms) belonging to diverse environmental compartments, to address different goals (e.g., species sensitivity or PPP bioaccumulation assessment, ecosystem services protection). Among them, mechanistic models are increasingly recognized by EFSA for PPP regulatory risk assessment but, to date, remain not considered in notified guidance documents. The strengths and limits of the reviewed models are discussed together with improvement avenues (multigenerational effects, multiple biotic and abiotic stressors). This review also underlines a lack of model testing by means of field data and of sensitivity and uncertainty analyses. Accurate and robust modeling of PPP effects and other stressors on living organisms, from their application in the field to their functional consequences on the ecosystems at different scales of time and space, would help going toward a more sustainable management of the environment. Graphical Abstract Combination of the keyword lists composing the first bibliographic query. Columns were joined together with the logical operator AND. All keyword lists are available in Supplementary Information at https://doi.org/10.5281/zenodo.5775038 (Larras et al. 2021).


Assuntos
Produtos Agrícolas , Ecossistema , Ecotoxicologia , Praguicidas , Animais , Praguicidas/efeitos adversos , Medição de Risco
17.
Artigo em Inglês | MEDLINE | ID: mdl-35239121

RESUMO

It is essential to monitor pesticides in soils as their presence at trace levels and their bioavailability can induce adverse effects on soil's ecosystems, animals, and human health. In this study, we developed an analytical method for the quantification of traces of multi-class pesticides in soil using liquid chromatography-tandem mass spectrometry. In this way, 31 pesticides were selected, including 12 herbicides, 9 insecticides, and 10 fungicides. Two extraction techniques were first evaluated, namely, the pressurized liquid extraction and the QuEChERS procedure. The latest one was finally selected and optimized, allowing extraction recoveries of 55 to 118%. The role of the chelating agent EDTA, which binds preferentially to soil cations that complex some pesticides, was highlighted. Coupled with liquid chromatography-tandem mass spectrometry, the procedure displayed very high sensitivity, with limits of quantification (LOQ) in the range 0.01-5.5 ng/g. A good linearity (R2 > 0.992) was observed over two orders of magnitude (LOQ-100 [Formula: see text] LOQ) with good accuracy (80-120%) for all compounds except the two pyrethroids lambda-cyhalothrin and tau-fluvalinate (accuracy comprised between 50 and 175%) and the cyclohexanedione cycloxydim (accuracy < 35%). Good repeatability and reproducibility were also achieved. The method was finally successfully applied to 12 soil samples collected from 3 land-use types. Among the 31-targeted pesticides, 24 were detected at least once, with concentration levels varying from LOQ to 722 ng/g. Many values were below 0.5 ng/g, indicating that the developed method could provide new knowledge on the extremely low residual contents of some pesticides.

18.
Water Res ; 216: 118342, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35349922

RESUMO

The burrowing, feeding and foraging activities of terrestrial and benthic organisms induce displacements of soil and sediment materials, leading to a profound mixing of these media. Such particle movements, called "sediment reworking" in aquatic environments and "bioturbation" in soils, have been thoroughly studied and modeled in sediments, where they affect organic matter mineralization and contaminant fluxes. In comparison, studies characterizing the translocation, by soil burrowers, of mineral particles, organic matter and adsorbed contaminants are paradoxically fewer. Nevertheless, models borrowed from aquatic ecology are used to predict the impact of bioturbation on organic matter turnover and contaminant transport in the soil. However, these models are based on hypotheses that have not been tested with adequate observations in soils, and may not necessarily reflect the actual impact of soil burrowers on particle translocation. This paper aims to (i) highlight the possible shortcomings linked to the current use of sediment reworking models for soils, (ii) identify how recent progresses in aquatic ecology could help to circumvent these limitations, and (iii) propose key steps to ensure that soil bioturbation models are built on solid foundations: more accurate models of organic matter turnover, soil evolution and contaminant transport in the soil are at stake.


Assuntos
Sedimentos Geológicos , Solo
19.
Sci Total Environ ; 844: 157003, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35772548

RESUMO

Before their placing on the market, the safety of plant protection products (PPP) towards both human and animal health, and the environment has to be assessed using experimental and modelling approaches. Models are crucial tools for PPP risk assessment and some even help to avoid animal testing. This review investigated the use of modelling approaches in the ecotoxicology section of PPP active substance assessment reports prepared by the authorities and opened to consultation from 2011 to 2021 in the European Union. Seven categories of models (Structure-Activity, ToxicoKinetic, ToxicoKinetic-ToxicoDynamic, Species Sensitivity Distribution, population, community, and mixture) were searched for into the reports of 317 active substances. At least one model category was found for 44 % of the investigated active substances. The most detected models were Species Sensitivity Distribution, Structure-Activity and ToxicoKinetic for 27, 21 and 15 % of the active substances, respectively. The use of modelling was of particular importance for conventional active substances such as sulfonylurea or carbamates contrary to microorganisms and plant derived substances. This review also highlighted a strong imbalance in model usage among the biological groups considered in the European Regulation (EC) No 1107/2009. For example, models were more often used for aquatic than for terrestrial organisms (e.g., birds, mammals). Finally, a gap between the set of models used in reports and those existing in the literature was observed highlighting the need for the implementation of more sophisticated models into PPP regulation.


Assuntos
Ecotoxicologia , Magnoliopsida , Animais , União Europeia , Humanos , Mamíferos , Plantas , Medição de Risco
20.
Environ Pollut ; 305: 119290, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35436506

RESUMO

Massive use of pesticides in conventional agriculture leads to accumulation in soil of complex mixtures, triggering questions about their potential ecotoxicological risk. This study assessed cropland soils containing pesticide mixtures sampled from conventional and organic farming systems at La Cage and Mons, France. The conventional agricultural field soils contained more pesticide residues (11 and 17 versus 3 and 11, respectively) and at higher concentrations than soils from organic fields (mean 6.6 and 10.5 versus 0.2 and 0.6 µg kg-1, respectively), including systemic insecticides belonging to neonicotinoids, carbamate herbicides and broad-spectrum fungicides mostly from the azole family. A risk quotient (RQi) approach evaluated the toxicity of the pesticide mixtures in soil, assuming concentration addition. Based on measured concentrations, both conventional agricultural soils posed high risks to soil invertebrates, especially due to the presence of epoxiconazole and imidacloprid, whereas soils under organic farming showed negligible to medium risk. To confirm the outcome of the risk assessment, toxicity of the soils was determined in bioassays following standardized test guidelines with seven representative non-target invertebrates: earthworms (Eisenia andrei, Lumbricus rubellus, Aporrectodea caliginosa), enchytraeids (Enchytraeus crypticus), Collembola (Folsomia candida), oribatid mites (Oppia nitens), and snails (Cantareus aspersus). Collembola and enchytraeid survival and reproduction and land snail growth were significantly lower in soils from conventional compared to organic agriculture. The earthworms displayed different responses: L. rubellus showed higher mortality on soils from conventional agriculture and large body mass loss in all field soils, E. andrei showed considerable mass loss and strongly reduced reproduction, and A. caliginosa showed significantly reduced acetylcholinesterase activity in soils from conventional agriculture. The oribatid mites did not show consistent differences between organic and conventional farming soils. These results highlight that conventional agricultural practices pose a high risk for soil invertebrates and may threaten soil functionality, likely due to additive or synergistic "cocktail effects".


Assuntos
Artrópodes , Ácaros , Oligoquetos , Praguicidas , Poluentes do Solo , Acetilcolinesterase , Agricultura , Animais , Invertebrados , Praguicidas/toxicidade , Reprodução , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA