Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(3): 1114-9, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24395800

RESUMO

The underpinnings of STAT3 hyperphosphorylation resulting in enhanced signaling and cancer progression are incompletely understood. Loss-of-function mutations of enzymes that dephosphorylate STAT3, such as receptor protein tyrosine phosphatases, which are encoded by the PTPR gene family, represent a plausible mechanism of STAT3 hyperactivation. We analyzed whole exome sequencing (n = 374) and reverse-phase protein array data (n = 212) from head and neck squamous cell carcinomas (HNSCCs). PTPR mutations are most common and are associated with significantly increased phospho-STAT3 expression in HNSCC tumors. Expression of receptor-like protein tyrosine phosphatase T (PTPRT) mutant proteins induces STAT3 phosphorylation and cell survival, consistent with a "driver" phenotype. Computational modeling reveals functional consequences of PTPRT mutations on phospho-tyrosine-substrate interactions. A high mutation rate (30%) of PTPRs was found in HNSCC and 14 other solid tumors, suggesting that PTPR alterations, in particular PTPRT mutations, may define a subset of patients where STAT3 pathway inhibitors hold particular promise as effective therapeutic agents.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Mutação , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Fator de Transcrição STAT3/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Sobrevivência Celular , Simulação por Computador , Células HEK293 , Humanos , Imuno-Histoquímica , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Estrutura Terciária de Proteína , Proteoma , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Transfecção
2.
Oncotarget ; 7(17): 23300-11, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27004400

RESUMO

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have not been effective in unselected head and neck squamous cell carcinoma (HNSCC) populations. We previously reported an exceptional response to a brief course of erlotinib in a patient with advanced HNSCC whose tumor harbored a MAPK1E322K somatic mutation. MAPK1E322Kwas associated with increased p-EGFR, increased EGFR downstream signaling and increased sensitivity to erlotinib. In this study, we investigated the mechanism of MAPK1E322K-mediated EGFR activation in the context of erlotinib sensitivity. We demonstrated increased AREG secretion in HNSCC cell lines harboring endogenous or exogenous MAPK1E322K compared to wild type MAPK1. We found inhibition or knockdown of MAPK1 with siRNA resulted in reduced secretion of AREG and decreased sensitivity to erlotinib in the setting of MAPK1E322K. MAPK1E322K was associated with increased AREG secretion leading to an autocrine feedback loop involving AREG, EGFR and downstream signaling. Knockdown of AREG in HNSCC cells harboring MAPK1E322K abrogated EGFR signaling and decreased sensitivity to erlotinib in vitro and in vivo. These cumulative findings implicate increased AREG secretion and EGFR activation as contributing to increased erlotinib sensitivity in MAPK1E322K HNSCC.


Assuntos
Anfirregulina/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Cloridrato de Erlotinib/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Proteína Quinase 1 Ativada por Mitógeno/genética , Mutação , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
JAMA Oncol ; 1(2): 238-44, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26181029

RESUMO

IMPORTANCE: Randomized clinical trials demonstrate no benefit for epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in unselected patients with head and neck squamous cell carcinoma (HNSCC). However, a patient with stage IVA HNSCC received 13 days of neoadjuvant erlotinib and experienced a near-complete histologic response. OBJECTIVE: To determine a mechanism of exceptional response to erlotinib therapy in HNSCC. DESIGN, SETTING, AND PARTICIPANTS: Single patient with locally advanced HNSCC who received erlotinib monotherapy in a window-of-opportunity clinical trial (patients scheduled to undergo primary cancer surgery are treated briefly with an investigational agent). Whole-exome sequencing of pretreatment tumor and germline patient samples was performed at a quaternary care academic medical center, and a candidate somatic variant was experimentally investigated for mediating erlotinib response. INTERVENTION: A brief course of erlotinib monotherapy followed by surgical resection. MAIN OUTCOMES AND MEASURES: Identification of pretreatment tumor somatic alterations that may contribute to the exceptional response to erlotinib. Hypotheses were formulated regarding enhanced erlotinib response in preclinical models harboring the patient tumor somatic variant MAPK1 E322K following the identification of tumor somatic variants. RESULTS: No EGFR alterations were observed in the pretreatment tumor DNA. Paradoxically, the tumor harbored an activating MAPK1 E322K mutation (allelic fraction 0.13), which predicts ERK activation and erlotinib resistance in EGFR-mutant lung cancer. The HNSCC cells with MAPK1 E322K exhibited enhanced EGFR phosphorylation and erlotinib sensitivity compared with wild-type MAPK1 cells. CONCLUSIONS AND RELEVANCE: Selective erlotinib use in HNSCC may be informed by precision oncology approaches.


Assuntos
Antineoplásicos/administração & dosagem , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Cloridrato de Erlotinib/administração & dosagem , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Inibidores de Proteínas Quinases/administração & dosagem , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/genética , Adulto , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Biópsia , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/patologia , Quimioterapia Adjuvante , Análise Mutacional de DNA , Esquema de Medicação , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Predisposição Genética para Doença , Neoplasias de Cabeça e Pescoço/enzimologia , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Terapia de Alvo Molecular , Mutação , Terapia Neoadjuvante , Estadiamento de Neoplasias , Fenótipo , Fosforilação , Valor Preditivo dos Testes , Ensaios Clínicos Controlados Aleatórios como Assunto , Indução de Remissão , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fatores de Tempo , Neoplasias da Língua/enzimologia , Neoplasias da Língua/patologia , Resultado do Tratamento
4.
Artigo em Inglês | MEDLINE | ID: mdl-24273416

RESUMO

Recurrent and/or metastatic head and neck squamous cell carcinoma (R/M HNSCC) is a devastating malignancy with a poor prognosis. Treatment is limited to chemotherapeutic approaches. Cisplatin is an established and effective treatment for R/M HNSCC, and many studies have investigated cisplatin treatment in combination with other agents. Even when being treated with first line therapy (cisplatin + 5-fluorouracil + cetuximab), overall survival is only 10 months, indicating the need for novel chemotherapeutics and treatment regimens. Current research is focused on molecular targeting therapies inhibiting epidermal growth factor receptor, phosphoinositide-3-kinase/Akt/mammalian target of rapamycin, and vascular endothelial growth factor pathways. A variety of clinical trials have been completed and are currently underway with encouraging results. Finally, future directions of cisplatin-based R/M HNSCC treatment may include targeting specific pathways known to induce cisplatin resistance, such as nucleotide excision repair and inhibition of apoptosis, in hopes to enhance response to cisplatin therapy.

5.
PLoS One ; 7(3): e32500, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22403666

RESUMO

BACKGROUND: A major mechanism of translational regulation in response to a variety of stresses is mediated by phosphorylation of eIF2α to reduce delivery of initiator tRNAs to scanning ribosomes. For some mRNAs, often encoding a bZIP transcription factor, eIF2α phosphorylation leads to enhanced translation due to delayed reinitiation at upstream open reading frames. Dictyostelium cells possess at least three eIF2α kinases that regulate various portions of the starvation-induced developmental program. Cells possessing an eIF2α that cannot be phosphorylated (BS167) show abnormalities in growth and development. We sought to identify a bZIP protein in Dictyostelium whose production is controlled by the eIF2α regulatory system. PRINCIPAL FINDINGS: Cells disrupted in the bzpR gene had similar developmental defects as BS167 cells, including small entities, stalk defects, and reduced spore viability. ß-galactosidase production was used to examine translation from mRNA containing the bzpR 5' UTR. While protein production was readily apparent and regulated temporally and spatially in wild type cells, essentially no ß-galactosidase was produced in developing BS167 cells even though the lacZ mRNA levels were the same as those in wild type cells. Also, no protein production was observed in strains lacking IfkA or IfkB eIF2α kinases. GFP fusions, with appropriate internal controls, were used to directly demonstrate that the bzpR 5' UTR, possessing 7 uORFs, suppressed translation by 12 fold. Suppression occurred even when all but one uORF was deleted, and translational suppression was removed when the ATG of the single uORF was mutated. CONCLUSIONS: The findings indicate that BzpR regulates aspects of the development program in Dictyostelium, serving as a downstream effector of eIF2α phosphorylation. Its production is temporally and spatially regulated by eIF2α phosphorylation by IfkA and IfkB and through the use of uORFs within the bzpR 5' UTR.


Assuntos
Dictyostelium/crescimento & desenvolvimento , Dictyostelium/metabolismo , Proteínas de Protozoários/metabolismo , eIF-2 Quinase/metabolismo , Regiões 5' não Traduzidas/genética , Sequência de Bases , Dictyostelium/enzimologia , Dictyostelium/genética , Deleção de Genes , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Fosforilação , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA