Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(5): e2315871121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38277439

RESUMO

High electrochemical reversibility is required for the application of high-energy-density lithium (Li) metal batteries; however, inactive Li formation and SEI (solid electrolyte interface)-instability-induced electrolyte consumption cause low Coulombic efficiency (CE). The prior interfacial chemical designs in terms of alloying kinetics have been used to enhance the CE of Li metal anode; however, the role of its redox chemistry at heterointerfaces remains a mystery. Herein, the relationship between heterointerfacial redox chemistry and electrochemical transformation reversibility is investigated. It is demonstrated that the lower redox potential at heterointerface contributes to higher CE, and this enhancement in CE is primarily due to the regulation of redox chemistry to Li deposition behavior rather than the formation of SEI films. Low oxidation potential facilitates the formation of the surface with the highly electrochemical binding feature after Li stripping, and low reduction potential can maintain binding ability well during subsequent Li plating, both of which homogenize Li deposition and thus optimize CE. In particular, Mg hetero-metal with ultra-low redox potential enables Li metal anode with significantly improved CE (99.6%) and stable cycle life for 700 cycles at 3.0 mA cm-2. This work provides insight into the heterointerfacial design principle of next-generation negative electrodes for highly reversible metal batteries.

2.
Small ; 20(26): e2309435, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38229146

RESUMO

Self-assembly of colloidal nanoparticles enables the easy building of assembly units into higher-order structures and the bottom-up preparation of functional materials. Nickel phosphides represent an important group of catalysts for hydrogen evolution reaction (HER) from water splitting. In this paper, the preparation of porous nickel phosphide superparticles and their HER efficiencies are reported. Ni and Ni2P nanoparticles are self-assembled into binary superparticles via an oil-in-water emulsion method. After annealing and acid etching, the as-prepared Ni-Ni2P binary superparticles change into porous nickel phosphide superparticles. The porosity and crystalline phase of the superparticles can be tuned by adjusting the ratio of Ni and Ni2P nanoparticles. The resulting porous superparticles are effective in driving HER under acidic conditions, and the modulation of porosity and phase further optimize the electrochemical performance. The prepared Ni3P porous superparticles not only possess a significantly enhanced specific surface area compared to solid Ni-Ni2P superparticles but also exhibit an excellent HER efficiency. The calculations based on the density functional theories show that the (110) crystal facet exhibits a relatively lower Gibbs free energy of hydrogen adsorption. This work provides a self-assembly approach for the construction of porous metal phosphide nanomaterials with tunable crystalline phase and porosity.

3.
Angew Chem Int Ed Engl ; 63(11): e202319847, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38195861

RESUMO

Irregular Li deposition is the major reason for poor reversibility and cycle instability in Li metal batteries, even leading to safety hazards, the causes of which have been extensively explored. The structural disconnection induced by completely dissolving Li in the traditional testing protocol is a key factor accounting for irregular Li growth during the subsequent deposition process. Herein, the critical role played by the structural connectivity of electrochemical Li reservoir in subsequent Li deposition behaviors is elucidated and a morphology-performance correlation is established. The structural connection and resultant well-distributed morphology of the in situ electrochemical Li reservoir ensure efficient electron transfer and Li+ diffusion pathway, finally leading to homogenized Li nucleation and growth. Tailoring the geometry of Li reservoir can improve the coulombic efficiency and cyclability of anode-free Li metal batteries by optimizing Li deposition behavior.

4.
Angew Chem Int Ed Engl ; 63(11): e202320183, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38265307

RESUMO

Alloying-type antimony (Sb) with high theoretical capacity is a promising anode candidate for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). Given the larger radius of Na+ (1.02 Å) than Li+ (0.76 Å), it was generally believed that the Sb anode would experience even worse capacity degradation in SIBs due to more substantial volumetric variations during cycling when compared to LIBs. However, the Sb anode in SIBs unexpectedly exhibited both better electrochemical and structural stability than in LIBs, and the mechanistic reasons that underlie this performance discrepancy remain undiscovered. Here, using substantial in situ transmission electron microscopy, X-ray diffraction, and Raman techniques complemented by theoretical simulations, we explicitly reveal that compared to the lithiation/delithiation process, sodiation/desodiation process of Sb anode displays a previously unexplored two-stage alloying/dealloying mechanism with polycrystalline and amorphous phases as the intermediates featuring improved resilience to mechanical damage, contributing to superior cycling stability in SIBs. Additionally, the better mechanical properties and weaker atomic interaction of Na-Sb alloys than Li-Sb alloys favor enabling mitigated mechanical stress, accounting for enhanced structural stability as unveiled by theoretical simulations. Our finding delineates the mechanistic origins of enhanced cycling stability of Sb anode in SIBs with potential implications for other large-volume-change electrode materials.

5.
J Am Chem Soc ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029335

RESUMO

Element doping/substitution has been recognized as an effective strategy to enhance the structural stability of layered cathodes. However, abundant substitution studies not only lack a clear identification of the substitution sites in the material lattice, but the rigid interpretation of the transition metal (TM)-O covalent theory is also not sufficiently convincing, resulting in the doping/substitution proposals being dragged into design blindness. In this work, taking Li1.2Ni0.2Mn0.6O2 as a prototype, the intense correlation between the "disordered degree" (Li/Ni mixing) and interface-structure stability (e.g., TM-O environment, slab/lattice, and Li+ reversibility) is revealed. Specifically, the degree of disorder induced by the Mg/Ti substitution extends in the opposite direction, conducive to sharp differences in the stability of TM-O, Li+ diffusion, and anion redox reversibility, delivering fairly distinct electrochemical performance. Based on the established paradigm of systematic characterization/analysis, the "degree of disorder" has been shown to be a powerful indicator of material modification by element substitution/doping.

6.
Small ; 19(21): e2300175, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36843265

RESUMO

The construction of a protective layer for stabilizing anion redox reaction is the key to obtaining long cycling stability for Li-rich Mn-based cathode materials. However, the protection of the exposed surface/interface of the primary particles inside the secondary particles is usually ignored and difficult, let alone the investigation of the impact of the surface engineering of the internal primary particles on the cycling stability. In this work, an efficient method to regulate cycling stability is proposed by simply adjusting the distribution state of the boron nickel complexes coating layer. Theoretical calculation and experimental results display that the full-surface boron nickel complexes coating layer can not only passivate the activity of interface oxygen and improve its stability but also play the role of sharing voltage and protective layer to gradually activate the oxygen redox reaction during cycling. As a result, the elaborately designed cobalt-free Li-rich Mn-based cathode displays the highest discharge-specific capacity retentions of 91.1% after 400 cycles at 1 C and 94.3% even after 800 cycles at 5 C. In particular, the regulation strategy has well universality and is suitable for other high-capacity Li-rich cathode materials.

7.
Small ; 19(47): e2303256, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37501313

RESUMO

High-capacity Li-rich layered oxides (LLOs) suffer from severe structure degradation due to the utilization of hybrid anion- and cation-redox activity. The native post-cycled structure, composed of progressively densified defective spinel layer (DSL) and intrinsic cations mixing, is deemed as the hindrance of the rapid and reversible de/intercalation of Li+ . Herein, the artificial post-cycled structure consisting of artificial DSL and inner cations mixing is in situ constructed, which would act as a shield against the irreversible oxygen emission and undesirable transition metal migration by suppressing anion redox activity and modulating cation mixing. Eventually, the modified DSL-2% Li-rich cathode demonstrates remarkable electrochemical properties with a high discharge capacity of 187 mAh g-1 after 500 cycles at 2 C, and improved voltage stability. Even under harsh operating conditions of 50 °C, DSL-2% can provide a high discharge capacity of 168 mAh g-1 after 250 cycles at 2 C, which is much higher than that of pristine LLO (92 mAh g-1 ). Furthermore, the artificial post-cycled structure provides a novel perspective on the role of native post-cycled structure in sustaining the lattice structure of the lithium-depleted region and also provides an insightful universal design principle for highly stable intercalated materials with anionic redox activity.

8.
Nano Lett ; 22(14): 5874-5882, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35763376

RESUMO

Constructing 3D skeletons modified with lithiophilic seeds has proven effective in achieving dendrite-free lithium metal anodes. However, these lithiophilic seeds are mostly alloy- or conversion-type materials, and they tend to aggregate and redistribute during cycling, resulting in the failure of regulating Li deposition. Herein, we address this crucial but long-neglected issue by using intercalation-type lithiophilic seeds, which enable antiaggregation owing to their negligible volume expansion and high electrochemical stability against Li. To exemplify this, a 3D carbon-based host is built, in which ultrafine TiO2 seeds are uniformly embedded in nitrogen-doped hollow porous carbon spheres (N-HPCSs). The TiO2@N-HPCSs electrode exhibits superior Coulombic efficiency, high-rate capability, and long-term stability when evaluated as compertitive anodes for Li metal batteries. Furthermore, the superiority of intercalation-type seeds is comprehensively revealed through controlled experiments by various in situ/ex situ electron and optical microscopies, which highlights the excellent structural stability and lithiophilicity of TiO2 nanoseeds upon repeated cycling.


Assuntos
Lítio , Sementes , Carbono , Eletrodos
9.
Angew Chem Int Ed Engl ; 62(11): e202216557, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36510474

RESUMO

Passivation of stainless steel by additives forming mass-transport blocking layers is widely practiced, where Cr element is added into bulk Fe-C forming the Cr2 O3 -rich protective layer. Here we extend the long-practiced passivation concept to Si anodes for lithium-ion batteries, incorporating the passivator of LiF/Li2 CO3 into bulk Si. The passivation mechanism is studied by various ex situ characterizations, redox peak contour maps, thickness evolution tests, and finite element simulations. The results demonstrate that the passivation can enhance the (de)lithiation of Li-Si alloys, induce the formation of F-rich solid electrolyte interphase, stabilize the Si/LiF/Li2 CO3 composite, and mitigate the volume change of Si anodes upon cycling. The 3D passivated Si anode can fully retain a high capacity of 3701 mAh g-1 after 1500 cycles and tolerate high rates up to 50C. This work provides insight into how to construct durable Si anodes through effective passivation.

10.
Small ; 18(43): e2107368, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35315576

RESUMO

Metal-sulfur batteries exhibit great potential as next-generation rechargeable batteries due to the low sulfur cost and high theoretical energy density. Sodium-sulfur (Na-S) batteries present higher feasibility of long-term development than lithium-sulfur (Li-S) batteries in technoeconomic and geopolitical terms. Both lithium and sodium are alkali metal elements with body-centered cubic structures, leading to similar physical and chemical properties and exposing similar issues when employed as the anode in metal-sulfur batteries. Indeed, some inspiration for mechanism researches and strategies in Na-S systems comes from the more mature Li-S systems. However, the dissimilarities in microscopic characteristics determine that Na-S is not a direct Li-S analogue. Herein, the daunting challenges derived by the differences of fundamental characteristics in Na-S and Li-S systems are discussed. And the corresponding strategies in Na-S batteries are reviewed. Finally, general conclusions and perspectives toward the research direction are presented based on the dissimilarities between both systems. This review attempts to provide important insights to facilitate the assimilation of the available knowledge on Li-S systems for accelerating the development of Na-S batteries on the basis of their dissimilarities.

11.
Small ; 18(30): e2200942, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35760758

RESUMO

The high capacity of Li-rich and Mn-based (LRM) cathode materials is originally due to the unique hybrid anion- and cation redox, which also induces detrimental oxygen escape. Furthermore, the counter diffusion of released oxygen (into electrolyte) and induced oxygen vacancies (into the interior bulk phase) that occurs at the interface will cause uncontrolled phase collapse and other issues. Therefore, due to its higher working voltage (>4.7 V) than the activation voltage of lattice oxygen in LRM (≈4.5 V), the anion-redox-free and structurally consistent cobalt-free LiNi0.5 Mn1.5 O4 (LNMO) is selected to in situ construct a robust, crystal-dense and lattice-matched oxygen-passivation-layer (OPL) on the surface of LRM particles by the electrochemical delithiation to protect the core layered components. As expected, the modified sample displays continuously decreasing interfacial impedance and high specific capacity of 135.5 mAh g-1 with a very small voltage decay of 0.67 mV per cycle after 1000 cycles at 2 C rate. Moreover, the stress accumulation during cycling is mitigated effectively. This semicoherent OPL strengthens the surface stability and interrupts the counter diffusion of oxygen and oxygen vacancies in LRM cathode materials, which would provide guidance for designing high-energy-density layered cathode materials.

12.
Small ; 16(31): e1907261, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32578393

RESUMO

Designing and constructing bimetallic hierarchical structures is vital for the conversion-alloy reaction anode of sodium-ion batteries (SIBs). Particularly, the rationally designed hetero-interface engineering can offer fast diffusion kinetics in the interface, leading to the improved high-power surface pseudocapacitance and cycling stability for SIBs. Herein, the hierarchical zinc-tin sulfide nanocages (ZnS-NC/SnS2 ) are constructed through hydrothermal and sulfuration reactions. The unconventional hierarchical design with internal void space greatly optimizes the structure stability, and bimetallic sulfide brings a bimetallic composite interface and N heteroatom doping, which are devoted to high electrochemical activity and improved interfacial charge transfer rate for Na+ storage. Remarkably, the ZnS-NC/SnS2 composite anode exhibits a delightful reversible capacity of 595 mAh g-1 after 100 cycles at 0.2 A g-1 , and long cycling capability for 500 cycles with a low capacity loss of 0.08% per cycle at 1 A g-1 . This study opens up a new route for rationally constructing hierarchical heterogeneous interfaces and sheds new light on efficient anode material for SIBs.

13.
Nanotechnology ; 31(35): 355601, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32554887

RESUMO

Building core-shell structures is a valuable method of enhancing the oxidation-resistance performance of Cu nanoparticles for practical applications in the field of printed circuit boards. In this study, Cu@Ni core-shell nanoparticles are synthesized via an injection solution approach utilizing Cu seeds produced during the reactions to induce the epitaxial growth of Ni shells. The thickness of the Ni shell can be controlled by varying the Cu:Ni molar ratios in the injected precursor solution, whereas changing the injection rate of the Cu precursor solution affects the size of the Cu seeds and thus controls the eventual size of the core-shell nanoparticles. Thermogravimetric analysis reveals a superior thermal stability against oxidation for Cu@Ni core-shell nanoparticles, as compared with Cu nanoparticles. The oxidation resistance of Cu@Ni conductive films increases with an increase in the Ni:Cu ratio, while the conductivity increases with a decrease in the Ni:Cu ratio. A relatively low resistivity of 27.4 µΩ cm is achieved for Cu@Ni conductive films. The results demonstrate that coating Cu nanoparticles with Ni shells via epitaxial growth can form closed shells with smooth surfaces which are valuable for Cu nanoparticles in applications where oxidation resistance is a requirement .

14.
J Am Chem Soc ; 141(27): 10876-10882, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31203612

RESUMO

Li-rich layered oxides have been in focus because of their high specific capacity. However, they usually suffer from poor kinetics, severe voltage decay, and capacity fading. Herein, a long-neglected Li-deficient method is demonstrated to address these problems by simply reducing the lithium content. Appropriate lithium vacancies can improve dynamics features and induce in situ surface spinel coating and nickel doping in the bulk. Therefore, the elaborately designed Li1.098Mn0.533Ni0.113Co0.138O2 cathode possesses improved initial Coulombic efficiency, excellent rate capability, largely suppressed voltage decay, and outstanding long-term cycling stability. Specifically, it shows a superior capacity retention of 93.1% after 500 cycles at 1 C (250 mA g-1) with respect to the initial discharge capacity (193.9 mA h g-1), and the average voltage still exceeds 3.1 V. In addition, the discharge capacity at 10 C can be as high as 132.9 mA h g-1. More importantly, a Li-deficient cathode can also serve as a prototype for further performance enhancement, as there are plenty of vacancies.

15.
Nano Lett ; 18(6): 3934-3942, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29734805

RESUMO

Na-O2 batteries are emerging rechargeable batteries due to their high theoretical energy density and abundant resources, but they suffer from sluggish kinetics due to the formation of large-size discharge products with cubic or irregular particle shapes. Here, we report the unique growth of discharge products of NaO2 nanowires inside Na-O2 batteries that significantly boosts the performance of Na-O2 batteries. For this purpose, a high-spin Co3O4 electrocatalyst was synthesized via the high-temperature oxidation of pure cobalt nanoparticles in an external magnetic field. The discharge products of NaO2 nanowires are 10-20 nm in diameter and ∼10 µm in length, characteristics that provide facile pathways for electron and ion transfer. With these nanowires, Na-O2 batteries have surpassed 400 cycles with a fixed capacity of 1000 mA h g-1, an ultra-low over-potential of ∼60 mV during charging, and near-zero over-potential during discharging. This strategy not only provides a unique way to control the morphology of discharge products to achieve high-performance Na-O2 batteries but also opens up the opportunity to explore growing nanowires in novel conditions.

16.
Small ; 14(10)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29280280

RESUMO

3D Graphene sheets encapsulated amorphous hollow CoSnO3 nanoboxes (H-CoSnO3 @reduced graphene oxide [RGO]) are successfully fabricated by first preparing 3D graphene oxides encapsulated solid CoSn(OH)6 nanocubes, followed by an alkaline etching process and subsequent heating treatment in Ar. The hollow CoSnO3 nanoboxes with average particle size of 230 nm are uniformly and tightly encapsulated by RGO sheets. As an anode material for Li-ion batteries, H-CoSnO3 @RGO displays high initial Coulombic efficiency of 87.1% and large reversible capacity of 1919 mA h g-1 after 500 cycles at the current density of 500 mA g-1 . Moreover, excellent rate capability (1250, 1188, 1141, 1115, 1086, 952, 736, and 528 mA h g-1 at 100, 200, 300, 400, 500, 1000, 2000, and 5000 mA g-1 , respectively) is acquired. The reasons for excellent lithium storage properties of H-CoSnO3 @RGO are discussed in detail.

17.
Sensors (Basel) ; 18(4)2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565289

RESUMO

A constrained least-squares (CLS) 3D source localization method is presented for acoustic sensor networks with sensor position errors. The proposed approach uses angles of arrivals (AOAs) and gain ratios of arrival (GROAs) measured simultaneously at each node to estimate the source position jointly. Compared to AOA-only localization methods, the GROAs can be used in conjunction with AOA measurements so as to get more accurate results by exploiting the geometrical relationship between these two measurements. Compared to time difference of arrival localization methods, the proposed algorithm does not require accurate time synchronization over different nodes. The theoretical mean-square error matrices of the proposed approach are derived and they are exactly equal to the Cramér-Rao bound for Gaussian noise under the small error condition. Simulations validate the performance of the proposed estimator.

18.
Nanotechnology ; 27(45): 455602, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27727155

RESUMO

We report facile solution approaches for the phase-controlled synthesis of rock-salt cubic CoO (c-CoO) and wurtzite-type hexagonal CoO (h-CoO) nanocrystals. In the syntheses, the cobalt precursor cobalt (II) stearate is decomposed in 1-octadecene at 320 °C, and the crystalline phase of synthesized products depend critically on the amounts of H2O. While the presence of small amounts of H2O promotes the generation of c-CoO, h-CoO is obtained in the absence of H2O. The as-prepared c-CoO nanocrystals exhibit a multi-branched morphology with several short rods growing on the 〈100〉 direction interlaced together whereas the h-CoO nanocrystals show a multi-rod structure with several rods growing on the same base facet along the c-axis. The formation mechanisms are discussed on the basis of FTIR spectrometry data and color changes of the reaction mixture. Finally the magnetic properties of as-prepared CoO nanocrystals are measured and the results show that c-CoO nanocrystals are intrinsically antiferromagnetic with a Néel temperature of about 300 K but the antiferromagnetic ordering is not distinct for the h-CoO nanocrystals. Weak ferromagnetic contributions are also observed for both c-CoO and h-CoO nanocrystals with obvious magnetic hysteresis at 5 and 300 K. The uncompensated spins that can be induced by crystalline defects such as cation-vacancy may account for the observed weak ferromagnetism.

19.
Chem Soc Rev ; 44(21): 7540-90, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26288197

RESUMO

Core-shell nanoparticles (CSNs) are a class of nanostructured materials that have recently received increased attention owing to their interesting properties and broad range of applications in catalysis, biology, materials chemistry and sensors. By rationally tuning the cores as well as the shells of such materials, a range of core-shell nanoparticles can be produced with tailorable properties that can play important roles in various catalytic processes and offer sustainable solutions to current energy problems. Various synthetic methods for preparing different classes of CSNs, including the Stöber method, solvothermal method, one-pot synthetic method involving surfactants, etc., are briefly mentioned here. The roles of various classes of CSNs are exemplified for both catalytic and electrocatalytic applications, including oxidation, reduction, coupling reactions, etc.

20.
Small ; 11(12): 1460-9, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25356536

RESUMO

The combination of metal and semiconductor components in nanoscale to form a hybrid nanocrystal provides an important approach for achieving advanced functional materials with special optical, magnetic and photocatalytic functionalities. Here, a facile solution method is reported for the synthesis of Au-Ni-ZnO metal-semiconductor hybrid nanocrystals with a flower-like morphology and multifunctional properties. This synthetic strategy uses noble and magnetic metal Au@Ni nanocrystal seeds formed in situ to induce the heteroepitaxial growth of semiconducting ZnO nanopyramids onto the surface of metal cores. Evidence of epitaxial growth of ZnO{0001} facets on Ni {111} facets is observed on the heterojunction, even though there is a large lattice mismatch between the semiconducting and magnetic components. Adjustment of the amount of Au and Ni precursors can control the size and composition of the metal core, and consequently modify the surface plasmon resonance (SPR) and magnetic properties. Room-temperature superparamagnetic properties can be achieved by tuning the size of Ni core. The as-prepared Au-Ni-ZnO nanocrystals are strongly photocatalytic and can be separated and re-cycled by virtue of their magnetic properties. The simultaneous combination of plasmonic, semiconducting and magnetic components within a single hybrid nanocrystal furnishes it multifunctionalities that may find wide potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA