Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemphyschem ; 24(2): e202200607, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36177607

RESUMO

The development of nonprecious metal-based electrocatalysts with remarkable catalytic activity and long-cycling lifespan toward oxygen reduction reaction (ORR) and evolution reaction (OER) is especially important for rechargeable zinc-air batteries (ZABs). Herein, monodispersed Co9 S8 nanoparticles embedded in nitrogen-doped hierarchically porous hollow carbon spheres (Co9 S8 NPs/NHCS) are synthesized through a template-assisted strategy followed by a co-assembly, thermal annealing, and sulfurization process. Benefiting from larger specific surface area, hierarchically porous hollow structure, and carbon nanotubes self-growth, the obtained Co9 S8 NPs/NHCS-0.5 electrocatalyst exhibits decent performance for ORR (E1/2 =0.85 V) and OER (E10 =1.55 V). A rechargeable ZAB assembled using the Co9 S8 NPs/NHCS-0.5 as air cathode delivers a maximum power density of 116 mW cm-2 , high open circuit voltage of 1.47 V, and good durability (no obvious voltage decay after 1200 cycles (200 hours)). Such a hierarchically porous hollow structure of Co9 S8 NPs/NHCS-0.5 provides a confined space shell and an interconnected hollow core to achieve outstanding bifunctional catalytic activity and cycling stability, which surpass the benchmark Pt/C-RuO2 .

2.
ACS Appl Mater Interfaces ; 16(3): 3302-3310, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207005

RESUMO

Room-temperature sodium-sulfur (RT Na-S) batteries have gained significant interest thanks to their satisfactory energy density and abundant earth resources. Nevertheless, practical implementations of RT Na-S batteries are still impeded by serious shuttle effects of sodium polysulfide (NaPS) intermediates, sluggish redox kinetics of cathodes, and poor electronic conductivity from S-species. To solve these problems, heterostructured Co/CeO2-decorating N-doped porous carbon nanocubes (Co/CeO2-NPC) are constructed as a S support, which integrates the strong adsorption and fast conversion of NaPSs, together with superior electronic conductivity. Consequently, the as-synthesized S@Co/CeO2-NPC cathode for RT Na-S batteries exhibits improved rate performance (1275, 561.1, and 485 mAh g-1 at 0.1, 5, and 10 C, respectively) and superior cyclic durability (capacity degeneration of 0.027% per cycle after 1000 cycles at 5 C). Such a S cathode combining a heterostructure interface, hierarchical porous carbon nanocubes, and polar compositions can considerably increase electronic conductivity and promote NaPS adsorption and conversion, achieving superior performance toward RT Na-S batteries.

3.
J Colloid Interface Sci ; 649: 571-580, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37364457

RESUMO

Hollow nitrogen-doped porous carbon spheres (HNCS) with plentiful coordination N sites, high surface area, and superior electrical conductivity are ideal catalyst supports due to their easily access of reactants to active sites and excellent stability. To date, nevertheless, little has been reported on HNCS as supports to metal-single-atomic sites for CO2 reduction (CO2R). Here we report our findings in preparation of nickel-single-atom catalysts anchored on HNCS (Ni SAC@HNCS) for highly efficient CO2R. The obtained Ni SAC@HNCS catalyst exhibits excellent activity and selectivity for the electrocatalytic CO2-to-CO conversion, achieving a Faradaic efficiency (FE) of 95.2% and a partial current density of 20.2 mA cm-2. When applied to a flow cell, the Ni SAC@HNCS delivers above 95% FECO over a wide potential range and a peak FECO of 99%. Further, there is no obvious degradation in FECO and the current for CO production during continuous electrocatalysis of 9 h, suggesting good stability of Ni SAC@HNCS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA