Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 11(59): 37131-37137, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496391

RESUMO

Zeolite membranes with unique physical and chemical properties are emerging as attractive candidates for membrane separation. However, defects in the zeolite layer seriously affect their molecular sieving performance. In this study, a novel strategy for preparing compact zeolite membranes on rough supports with the assistance of a reticulated hydrotalcite layer was developed. The reticulated hydrotalcite layer was grown on the inner surface of a 170 mm length ceramic tube by an in situ hydrothermal method, and a NaA zeolite membrane was prepared on this reticulated layer by the microwave-heating method. The hydrotalcite interlayer could not only improve the smoothness and regularity of the surface of the support but also fix the Si/Al active ingredients using its reticulate structure, finally effectively improving the quality and stability of the zeolite layer. The optimal molar ratio of the synthesis solution for the synthesis of the zeolite membrane was 3Na2O : 2SiO2 : Al2O3 : 200H2O. The permeance flux of H2 through the zeolite membrane synthesized under the optimal conditions was high as 0.47 × 10-6 mol m-2 s-1 Pa-1, and its permselectivity for H2 over N2 was 4.7, which was higher than the corresponding Knudsen diffusion coefficient. This study provides a new idea for the preparation of defect-free membranes on rough supports.

2.
J Neurosci Res ; 88(9): 2035-45, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20186763

RESUMO

To investigate the neuroprotective effect of L-serine and its underlying mechanisms, focal cerebral ischemia was induced in rats by occlusion of middle cerebral artery (MCAO) with a suture, and reperfusion was given by filament withdrawal 2 hr later. Meanwhile, rat hippocampal neurons were primarily cultured, and incubated in serum-free medium in an incubator containing 1% O(2) for hypoxic exposure of 5 hr, or incubated in serum-free medium containing 1 mM glutamate for glutamate exposure of 2 hr. Brain tissue injury and cell damage were then measured. L-serine dose-dependently decreased the neurology deficit score and infarct volume, elevated the cell viability and inhibited the leakage of lactate dehydrogenase. These effects were blocked by strychnine in both MCAO rats and cultured hippocampal neurons. Furthermore, L-serine (168 mg.kg(-1)) reduced the brain water content, permeability of blood-brain barrier, neuronal loss and the expression of activated caspase-3 in the cortex. In addition, L-serine effectively protected the brain from damage when it was administered within 6 hr after the end of MCAO. It is suggested that L-serine could exert a neuroprotective effect on the ischemic-reperfused brain and on the hypoxia- or glutamate-exposed hippocampal neurons, which may be mediated by activating glycine receptors.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Serina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Ácido Glutâmico/metabolismo , Glicinérgicos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Sprague-Dawley , Serina/administração & dosagem , Estricnina/farmacologia , Fatores de Tempo
3.
Am J Chin Med ; 37(4): 759-70, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19655413

RESUMO

In order to investigate the mechanisms underlying the neuroprotective effect of ginsenoside Rb3, rat hippocampal neurons were primarily cultured, and exposed to 1 mM N-methyl-D-aspartate (NMDA), cell viability and lactate dehydrogenase leakage were measured. Ca2+ influx was determined by calcium imaging with a laser confocal microscopy. The influences of ginsenoside Rb3 on these variables were examined. Patch-clamp technique was used to observe the effects of ginsenoside Rb3 on NMDA-evoked current. The results show that treatment of Rb3 raised the neuronal viability, reduced the leakage of lactate dehydrogenase, and inhibited NMDA-elicited Ca2+ influx in a dose-dependent manner. In the presence of Rb3, NMDA-evoked peak current was inhibited, and Ca2+-induced desensitization of NMDA current was facilitated. It is suggested that ginsenoside Rb3 could exert a neuroprotective role on hippocampal neurons, a role which was partly mediated by the facilitation of Ca2+-dependent deactivation of NMDA receptors, and the resultant reduction of intracellular free Ca2+ level.


Assuntos
Ginsenosídeos/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Hipocampo/citologia , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Microscopia Confocal , N-Metilaspartato/farmacologia , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Tempo
4.
Eur J Pharmacol ; 586(1-3): 90-9, 2008 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-18430419

RESUMO

The purpose of this study is to assess the neuroprotective effect of Rg1, a ginsenoside. We measured cell viability and lactate dehydrogenase (LDH) release from primary culture of rat hippocampal neurons and electrical activities in hippocampal slices of rats, before and after the neurons were deprived of oxygen and glucose. In addition, cerebral damage was evaluated with magnetic resonance imaging after middle cerebral artery was occluded transiently. Nissl staining was used for histological observation and immunohistochemistry analysis for activated caspase-3 expression of the brain. Furthermore, calcium influx was measured with laser confocal microscopy in neurons perfused with KCl (50 mM) or N-methyl-d-aspartate (NMDA, 1 mM), or deprived of oxygen and glucose. The influences of ginsenoside Rg1 on these parameters were determined simultaneously. We found that treatment of Rg1: 1) increased the neuronal viability; 2) promoted the recovery of electrical activity in hippocampal slices; 3) reduced the release of LDH, cerebral damage area, neuronal loss and expression of caspase-3; and 4) inhibited calcium influx induced by NMDA, KCl or oxygen/glucose deprivation. However, the protective effect of Rg1 was blocked by mifepristone, an antagonist of glucocorticoid receptors. Taken together, these results suggest that ginsenoside Rg1 can reduce neuronal death, including apoptotic cell death, induced by hypoxic-ischemic insults. This neuroprotective effect is probably mediated by the activation of glucocorticoid receptors, and by the inhibition of calcium influx through NMDA receptors and L-type voltage-dependent Ca2+ channels and the resultant reduction of intracellular free Ca2+.


Assuntos
Canais de Cálcio Tipo L/efeitos dos fármacos , Cálcio/metabolismo , Ginsenosídeos/farmacologia , Hipóxia-Isquemia Encefálica/patologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glucose/deficiência , Glucose/fisiologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/prevenção & controle , Imageamento por Ressonância Magnética , Masculino , Mifepristona/farmacologia , Ratos , Ratos Sprague-Dawley , Sais de Tetrazólio , Tiazóis
5.
Neurosci Bull ; 28(5): 550-60, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22968593

RESUMO

OBJECTIVE: Glycine acts as a co-agonist for the activation of N-methyl-D-aspartate receptors (NMDARs) by binding to glycine sites, thus potentiating glutamate-elicited responses and inhibiting NMDAR desensitization in a dose-dependent manner. The present study aimed to characterize the glycine-dependent inactivation of NMDARs and to explore its pathophysiological significance. METHODS: Primary hippocampal cell cultures from embryonic days 17-18 rats were treated with NMDA or NMDA plus glycine. Patch-clamp recording and intracellular Ca(2+) imaging were performed to test the effects of glycine on NMDA-activated currents and increase of intracellular free Ca(2+) respectively. Immunofluorescence staining was conducted to examine NR1 internalization. Cell damage was tested with MTT method and lactate dehydrogenase leakage. RESULTS: Glycine reduced the peak current and Ca(2+) influx elicited by NMDA application at concentrations ≥ 300 µmol/L. This is a novel suppressive influence of glycine on NMDAR function, since it occurs via the NMDAR glycine-binding site, in contrast to the classic suppression, which occurs through the binding of glycine to glycine receptors. The level of membrane NMDARs was measured to evaluate whether internalization was involved. Immunohistochemical labeling showed that incubation with high concentrations of NMDA plus glycine did not change the expression of NMDARs on the cell surface when compared to the expression without glycine; hence the possibility of NMDAR internalization primed by glycine binding was excluded. CONCLUSION: In summary, the novel suppressive effect of glycine on NMDARs was mediated via binding to the glycine site of the NMDAR and not by activation of the strychnine-sensitive glycine-receptor-gated chloride channel or by the internalization of NMDARs. The inhibitory influence of glycine on NMDARs adds a new insight to our knowledge of the complexity of synaptic transmission.


Assuntos
Glicina/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Glicina/farmacologia , Hipocampo/efeitos dos fármacos , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas
6.
J Neurotrauma ; 27(9): 1733-43, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20568957

RESUMO

This study was designed to evaluate the potential benefits of hyperbaric oxygen (HBO) in the treatment of traumatic brain injury (TBI). The right cerebral cortex of rats was injured by the impact of a 20-g object dropped from a predetermined height. The rats received HBO treatment at 3 ATA for 60 min after TBI. Neurological behavior score, brain water content, neuronal loss in the hippocampus, and cell apoptosis in brain tissue surrounding the primary injury site were examined to determine brain damage severity. Three and six hours after TBI, HBO-treated rats displayed a significant reduction in brain damage. However, by 12 h after TBI, the efficacy of HBO treatment was considerably attenuated. Furthermore, at 24, 48, and 72 h after TBI, the HBO treatment did not show any notable effects. In contrast, multiple HBO treatments (three or five times in all), even when started 48 h after TBI, remarkably reduced neurology deficit scores and the loss of neuronal numbers in the hippocampus. Although multiple treatments started at 48 h significantly improved neurological behaviors and reduced brain injury, the overall beneficial effects were substantially weaker than those seen after a single treatment at 6 h. These results suggest that: (1) HBO treatment could alleviate brain damage after TBI; (2) a single treatment with HBO has a time limitation of 12 h post-TBI; and (3) multiple HBO treatments have the possibility to extend the post-TBI delivery time window. Therefore, our results clearly suggest the validity of HBO therapy for the treatment of TBI.


Assuntos
Lesões Encefálicas/prevenção & controle , Lesões Encefálicas/terapia , Modelos Animais de Doenças , Oxigenoterapia Hiperbárica/métodos , Fármacos Neuroprotetores/uso terapêutico , Animais , Lesões Encefálicas/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA