Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 379(2193): 20190416, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33517876

RESUMO

This paper discusses the results of field-based geological investigations of exhumed rocks exposed in the Musgrave Ranges (Central Australia) and in Nusfjord (Lofoten, Norway) that preserve evidence for lower continental crustal earthquakes with focal depths of approximately 25-40 km. These studies have established that deformation of the dry lower continental crust is characterized by a cyclic interplay between viscous creep (mylonitization) and brittle, seismic slip associated with the formation of pseudotachylytes (a solidified melt produced during seismic slip along a fault in silicate rocks). Seismic slip triggers rheological weakening and a transition to viscous creep, which may be already active during the immediate post-seismic deformation along faults initially characterized by frictional melting and wall-rock damage. The cyclical interplay between seismic slip and viscous creep implies transient oscillations in stress and strain rate, which are preserved in the shear zone microstructure. In both localities, the spatial distribution of pseudotachylytes is consistent with a local (deep) source for the transient high stresses required to generate earthquakes in the lower crust. This deep source is the result of localized stress amplification in dry and strong materials generated at the contacts with ductile shear zones, producing multiple generations of pseudotachylyte over geological time. This implies that both the short- and the long-term rheological evolution of the dry lower crust typical of continental interiors is controlled by earthquake cycle deformation. This article is part of a discussion meeting issue 'Understanding earthquakes using the geological record'.

2.
Tectonics ; 40(8): e2021TC006818, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34594061

RESUMO

How major crustal-scale seismogenic faults nucleate and evolve in crystalline basements represents a long-standing, but poorly understood, issue in structural geology and fault mechanics. Here, we address the spatio-temporal evolution of the Bolfin Fault Zone (BFZ), a >40-km-long exhumed seismogenic splay fault of the 1000-km-long strike-slip Atacama Fault System. The BFZ has a sinuous fault trace across the Mesozoic magmatic arc of the Coastal Cordillera (Northern Chile) and formed during the oblique subduction of the Aluk plate beneath the South American plate. Seismic faulting occurred at 5-7 km depth and ≤ 300°C in a fluid-rich environment as recorded by extensive propylitic alteration and epidote-chlorite veining. Ancient (125-118 Ma) seismicity is attested by the widespread occurrence of pseudotachylytes. Field geologic surveys indicate nucleation of the BFZ on precursory geometrical anisotropies represented by magmatic foliation of plutons (northern and central segments) and andesitic dyke swarms (southern segment) within the heterogeneous crystalline basement. Seismic faulting exploited the segments of precursory anisotropies that were optimal to favorably oriented with respect to the long-term far-stress field associated with the oblique ancient subduction. The large-scale sinuous geometry of the BFZ resulted from the hard linkage of these anisotropy-pinned segments during fault growth.

3.
Sci Adv ; 10(9): eadi8533, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427735

RESUMO

The energy released during an earthquake is mostly dissipated in the fault zone and subordinately as radiated seismic waves. The on-fault energy budget is partitioned into frictional heat, generation of new grain surface by microfracturing, and crystal-lattice distortion associated with dislocation defects. The relative contribution of these components is debated and difficult to assess, but this energy partitioning strongly influences earthquake mechanics. We use high-resolution scanning-electron-microscopy techniques, especially to analyze shocked garnet in a fault wall-rock, to provide the first estimate of all three energy components for a seismic fault patch exhumed from midcrustal conditions. Fault single-jerk seismicity is recorded by the presence of pristine quenched frictional melt. The estimated value of energy per unit fault surface is ~13 megajoules per square meter for heat, which is predominant with respect to both surface energy (up to 0.29 megajoules per square meter) and energy associated with crystal lattice distortion (0.02 megajoules per square meter).

4.
Nature ; 436(7053): 1009-12, 2005 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16107846

RESUMO

Most of our knowledge about co-seismic rupture propagation is derived from inversion and interpretation of strong-ground-motion seismograms, laboratory experiments on rock and rock-analogue material, or inferred from theoretical and numerical elastodynamic models. However, additional information on dynamic rupture processes can be provided by direct observation of faults exhumed at the Earth's surface. Pseudotachylytes (solidified friction-induced melts) are the most certain fault-rock indicator of seismicity on ancient faults. Here we show how the asymmetry in distribution and the orientation of pseudotachylyte-filled secondary fractures around an exhumed fault can be used to reconstruct the earthquake rupture directivity, rupture velocity and fracture energy, by comparison with the theoretical dynamic stress field computed around propagating fractures. In particular, the studied natural network of pseudotachylytes is consistent with a dominant propagation direction during repeated seismic events and subsonic rupture propagation close to the Rayleigh wave velocity.

5.
J Geophys Res Solid Earth ; 126(11): e2021JB022232, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35859888

RESUMO

Rocks of the Earth's crust and mantle commonly consist of different minerals with contrasting mechanical properties. During progressive, high-temperature (ductile) deformation, these rocks develop extrinsic mechanical anisotropy linked to strain partitioning between different minerals, amount of accumulated strain, and bulk strain geometry. Extrinsic anisotropy plays an important role in a wide range of geodynamic processes up to the scale of mantle convection. However, the evolution of grain- and rock-scale fabrics causing this anisotropy cannot be directly simulated in large-scale numerical simulations. For two-phase aggregates-a good rheological approximation of most Earth's rocks-we propose a method to indirectly approximate the extrinsic viscous anisotropy by combining (a) 3D mechanical models of rock fabrics, and (b) analytical effective medium theories. Our results confirm that weak inclusions induce substantial weakening by forming a network of weak thin layers with limited lateral connectivity. Consequently, even when the inclusion phase is extremely weak, structural weakening is not larger than 30-60%, less than in previous estimates. On the other hand, the presence of strong inclusions does not have a profound impact on the effective strength of the aggregate, and lineated fabrics only develop at relatively low viscosity contrasts. When rigid inclusions become clogged, however, the aggregate viscosity can increase over the theoretical upper bound. We show that the modeled grain-scale fabrics can be parameterized as a function of the bulk deformation and material phase properties and combined with analytical solutions to approximate the anisotropic viscous tensor.

6.
J Geophys Res Solid Earth ; 124(2): 1671-1687, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31008001

RESUMO

Several theoretical studies indicate that a substantial fraction of the measured seismic anisotropy could be interpreted as extrinsic anisotropy associated with compositional layering in rocks, reducing the significance of strain-induced intrinsic anisotropy. Here we quantify the potential contribution of grain-scale and rock-scale compositional anisotropy to the observations by (i) combining effective medium theories with realistic estimates of mineral isotropic elastic properties and (ii) measuring velocities of synthetic seismic waves propagating through modeled strain-induced microstructures. It is shown that for typical mantle and oceanic crust subsolidus compositions, rock-scale compositional layering does not generate any substantial extrinsic anisotropy (<1%) because of the limited contrast in isotropic elastic moduli among different rocks. Quasi-laminated structures observed in subducting slabs using P and S wave scattering are often invoked as a source of extrinsic anisotropy, but our calculations show that they only generate minor seismic anisotropy (<0.1-0.2% of Vp and Vs radial anisotropy). More generally, rock-scale compositional layering, when present, cannot be detected with seismic anisotropy studies but mainly with wave scattering. In contrast, when grain-scale layering is present, significant extrinsic anisotropy could exist in vertically limited levels of the mantle such as in a mid-ocean ridge basalt-rich lower transition zone or in the uppermost lower mantle where foliated basalts and pyrolites display up to 2-3% Vp and 3-6% Vs radial anisotropy. Thus, seismic anisotropy observed around the 660-km discontinuity could be possibly related to grain-scale shape-preferred orientation. Extrinsic anisotropy can form also in a compositionally homogeneous mantle, where velocity variations associated with major phase transitions can generate up to 1% of positive radial anisotropy.

7.
Science ; 311(5761): 647-9, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16456076

RESUMO

Melt produced by friction during earthquakes may act either as a coseismic fault lubricant or as a viscous brake. Here we estimate the dynamic shear resistance (tau(f)) in the presence of friction-induced melts from both exhumed faults and high-velocity (1.28 meters per second) frictional experiments. Exhumed faults within granitoids (tonalites) indicate low tau(f) at 10 kilometers in depth. Friction experiments on tonalite samples show that tau(f) depends weakly on normal stress. Extrapolation of experimental data yields tau(f) values consistent with the field estimates and well below the Byerlee strength. We conclude that friction-induced melts can lubricate faults at intermediate crustal depths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA