Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 43(50): 8649-8662, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37852789

RESUMO

Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method that is rapidly growing in popularity for studying causal brain-behavior relationships. However, its dose-dependent centrally induced neural mechanisms and peripherally induced sensory costimulation effects remain debated. Understanding how TMS stimulation parameters affect brain responses is vital for the rational design of TMS protocols. Studying these mechanisms in humans is challenging because of the limited spatiotemporal resolution of available noninvasive neuroimaging methods. Here, we leverage invasive recordings of local field potentials in a male and a female nonhuman primate (rhesus macaque) to study TMS mesoscale responses. We demonstrate that early TMS-evoked potentials show a sigmoidal dose-response curve with stimulation intensity. We further show that stimulation responses are spatially specific. We use several control conditions to dissociate centrally induced neural responses from auditory and somatosensory coactivation. These results provide crucial evidence regarding TMS neural effects at the brain circuit level. Our findings are highly relevant for interpreting human TMS studies and biomarker developments for TMS target engagement in clinical applications.SIGNIFICANCE STATEMENT Transcranial magnetic stimulation (TMS) is a widely used noninvasive brain stimulation method to stimulate the human brain. To advance its utility for clinical applications, a clear understanding of its underlying physiological mechanisms is crucial. Here, we perform invasive electrophysiological recordings in the nonhuman primate brain during TMS, achieving a spatiotemporal precision not available in human EEG experiments. We find that evoked potentials are dose dependent and spatially specific, and can be separated from peripheral stimulation effects. This means that TMS-evoked responses can indicate a direct physiological stimulation response. Our work has important implications for the interpretation of human TMS-EEG recordings and biomarker development.


Assuntos
Eletroencefalografia , Estimulação Magnética Transcraniana , Masculino , Humanos , Feminino , Animais , Estimulação Magnética Transcraniana/métodos , Eletroencefalografia/métodos , Macaca mulatta , Potenciais Evocados/fisiologia , Biomarcadores , Potencial Evocado Motor/fisiologia
2.
Neuroimage ; 279: 120343, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619797

RESUMO

Non-human primates (NHPs) have become key for translational research in noninvasive brain stimulation (NIBS). However, in order to create comparable stimulation conditions for humans it is vital to study the accuracy of current modeling practices across species. Numerical models to simulate electric fields are an important tool for experimental planning in NHPs and translation to human studies. It is thus essential whether and to what extent the anatomical details of NHP models agree with current modeling practices when calculating NIBS electric fields. Here, we create highly accurate head models of two non-human primates (NHP) MR data. We evaluate how muscle tissue and head field of view (depending on MRI parameters) affect simulation results in transcranial electric and magnetic stimulation (TES and TMS). Our findings indicate that the inclusion of anisotropic muscle can affect TES electric field strength up to 22% while TMS is largely unaffected. Additionally, comparing a full head model to a cropped head model illustrates the impact of head field of view on electric fields for both TES and TMS. We find opposing effects between TES and TMS with an increase up to 24.8% for TES and a decrease up to 24.6% for TMS for the cropped head model compared to the full head model. Our results provide important insights into the level of anatomical detail needed for NHP head models and can inform future translational efforts for NIBS studies.


Assuntos
Eletricidade , Primatas , Animais , Humanos , Anisotropia , Simulação por Computador , Encéfalo
3.
Nat Commun ; 15(1): 1687, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402188

RESUMO

The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.


Assuntos
Encéfalo , Neurônios , Animais , Neurônios/fisiologia , Primatas , Potenciais de Ação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA