Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1862(1): 20-31, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26435084

RESUMO

We have used the human neuroblastoma cell line SH-SY5Y overexpressing Bcl-xL (SH-SY5Y/Bcl-xL) to clarify the effects of this mitochondrial protein on the control of mitochondrial dynamics and the autophagic processes which occur after the inhibition of leucine-rich repeat kinase 2 (LRRK2) with GSK2578215A. In wild type (SH-SY5Y/Neo) cells, GSK2578215A (1nM) caused a disruption of mitochondrial morphology and an imbalance in intracellular reactive oxygen species (ROS) as indicated by an increase in dichlorofluorescein fluorescence and 4-hydroxynonenal. However, SH-SY5Y/Bcl-xL cells under GSK2578215A treatment, unlike the wild type, preserved a high mitochondrial membrane potential and did not exhibit apoptotical chromatins. In contrast to wild type cells, in SH-SY5Y/Bcl-xL cells, GSK2578215A did not induce mitochondrial translocation of neither dynamin related protein-1 nor the proapoptotic protein, Bax. In SH-SY5Y/Neo, but not SH-SY5Y/Bcl-xL cells, mitochondrial fragmentation elicited by GSK2578215A precedes an autophagic response. Furthermore, the overexpression of Bcl-xL protein restores the autophagic flux pathway disrupted by this inhibitor. SH-SY5Y/Neo, but not SH-SY5Y/Bcl-xL cells, responded to LRRK2 inhibition by an increase in the levels of acetylated tubulin, indicating that this was abrogated by Bcl-xL overexpression. This hyperacetylation of tubulin took place earlier than any of the above-mentioned events suggesting that it is involved in the autophagic flux interruption. Pre-treatment with tempol prevented the GSK2578215A-induced mitochondrial fragmentation, autophagy and the rise in acetylated tubulin in SH-SY5Y/Neo cells. Thus, these data support the notion that ROS act as a second messenger connexion between LRRK2 inhibition and these deleterious responses, which are markedly alleviated by the Bcl-xL-mediated ROS generation blockade.


Assuntos
Autofagia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Dinâmica Mitocondrial , Estresse Oxidativo , Proteína bcl-X/metabolismo , Acetilação , Linhagem Celular Tumoral , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Doença de Parkinson/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA