Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Trop Med Hyg ; 109(4): 835-843, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37669756

RESUMO

Guinea worm (GW) disease (or dracunculiasis) is currently transmitted among dogs in Chad, which presents risks for the human population. We studied how interventions implemented at different levels might reduce the spread of GW disease (geographically and over time) and what levels of interventions might accelerate elimination. We built a multiple-water-source agent-based simulation model to analyze the disease transmission among dogs in Chad, as well as in geographic district clusters, and validated it using local infection data. We considered two interventions: 1) tethering, where infected dogs are kept on a leash during periods of infectivity, and 2) Abate®, under which the water source is treated to reduce infectivity. Our results showed that elimination (0 dog infections) is most likely achieved within 5 years with extremely high levels of tethering (95%) and Abate (90%), when intervention levels are uniform across district clusters. We used an optimization model to determine an improved strategy, with intervention levels which minimize the number of dogs newly infected in the 6th year, under limitations on intervention levels across clusters; the number of dogs infected after 5 years of intervention could be reduced by approximately 220 dogs with an optimized strategy. Finally, we presented strategies that consider fairness based on intervention resource levels and outcomes. Increased tethering and Abate resources above historical levels are needed to achieve the target of GW disease elimination; optimization methods can inform how best to target limited resources and reach elimination faster.

2.
Am J Trop Med Hyg ; 103(5): 1942-1950, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32901603

RESUMO

The campaign to eradicate dracunculiasis (Guinea worm [GW] disease) and its causative pathogen Dracunculus medinensis (GW) in Chad is challenged by infections in domestic dogs, which far outnumber the dwindling number of human infections. We present an agent-based simulation that models transmission of GW between a shared water source and a large population of dogs. The simulation incorporates various potential factors driving the infections including external factors and two currently used interventions, namely, tethering and larvicide water treatments. By defining and estimating infectivity parameters and seasonality factors, we test the simulation model on scenarios where seasonal patterns of dog infections could be driven by the parasite's life cycle alone or with environmental factors (e.g., temperature and rainfall) that could also affect human or dog behaviors (e.g., fishing versus farming seasons). We show that the best-fitting model includes external factors in addition to the pathogen's life cycle. From the simulation, we estimate that the basic reproductive number, R 0, is approximately 2.0; our results also show that an infected dog can transmit the infection to 3.6 other dogs, on average, during the month of peak infectivity (April). The simulation results shed light on the transmission dynamics of GWs to dogs and lay the groundwork for reducing the number of infections and eventually interrupting transmission of GW.


Assuntos
Simulação por Computador , Doenças do Cão/transmissão , Dracunculíase/veterinária , Dracunculus/fisiologia , Animais , Chade/epidemiologia , Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia , Cães , Dracunculíase/epidemiologia , Dracunculíase/parasitologia , Dracunculíase/transmissão , Dracunculus/crescimento & desenvolvimento , Meio Ambiente , Feminino , Estágios do Ciclo de Vida , Modelos Teóricos , Estações do Ano , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA