Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 30(13): 22376-22387, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36224936

RESUMO

We present the energy scaling of a sub-two-cycle (10.4 fs) carrier-envelope-phase-stable light source centered at 1.76 µm to 1.9 mJ pulse energy. The light source is based on an optimized spectral-broadening scheme in a hollow-core fiber and a consecutive pulse compression with bulk material. This is, to our knowledge, the highest pulse energy reported to date from this type of sources. We demonstrate the application of this improved source to the generation of bright water-window soft-X-ray high harmonics. Combined with the short pulse duration, this source paves the way to the attosecond time-resolved water-window spectroscopy of complex molecules in aqueous solutions.

2.
Opt Express ; 26(9): 11834-11842, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716100

RESUMO

We present a 0.2 TW sub-two-cycle 1.8 µm carrier-envelope-phase stable source based on two-stage pulse compression by filamentation for driving high-order harmonic generation extending beyond the oxygen K absorption edge. The 1 kHz repetition rate, high temporal resolution enabled by the short 11.8 fs driving pulse duration, and bright high-order harmonics generated in helium make this an attractive source for solid-state and molecular-dynamics studies.

3.
Opt Express ; 25(22): 27506-27518, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092222

RESUMO

Attosecond metrology has so far largely remained limited to titanium:sapphire lasers combined with an active stabilization of the carrier-envelope phase (CEP). These sources limit the achievable photon energy to ∼100 eV which is too low to access X-ray absorption edges of most second- and third-row elements which are central to chemistry, biology and material science. Therefore, intense efforts are underway to extend attosecond metrology to the soft-X-ray (SXR) domain using mid-infrared (mid-IR) drivers. Here, we introduce and experimentally demonstrate a method that solves the long-standing problem of the complete temporal characterization of ultra-broadband (≫10 eV) attosecond pulses. We generalize the recently proposed Volkov-transform generalized projection algorithm (VTGPA) to the case of multiple overlapping photoelectron spectra and demonstrate its application to isolated attosecond pulses. This new approach overcomes all key limitations of previous attosecond-pulse reconstruction methods, in particular the central-momentum approximation (CMA), and it incorporates the physical, complex-valued and energy-dependent photoionization matrix elements. These properties make our approach general and particularly suitable for attosecond supercontinua of arbitrary bandwidth. We apply this method to attosecond SXR pulses generated from a two-cycle mid-IR driver, covering a bandwidth of ∼100 eV and reaching photon energies up to 180 eV. We extract an SXR pulse duration of (43±1) as from our streaking measurements, defining a new world record. Our results prove that the popular and broadly available scheme of post-compressing the output of white-light-seeded optical parametric amplifiers is adequate to produce high-contrast isolated attosecond pulses covering the L-edges of silicon, phosphorous and sulfur. Our new reconstruction method and experimental results open the path to the production and characterization of attosecond pulses lasting less than one atomic unit of time (24 as) and covering X-ray absorption edges of most light elements.

4.
Sci Rep ; 13(1): 3059, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810355

RESUMO

We present an apparatus for attosecond transient-absorption spectroscopy (ATAS) featuring soft-X-ray (SXR) supercontinua that extend beyond 450 eV. This instrument combines an attosecond table-top high-harmonic light source with mid-infrared (mid-IR) pulses, both driven by 1.7-1.9 mJ, sub-11 fs pulses centered at 1.76 [Formula: see text]m. A remarkably low timing jitter of [Formula: see text] 20 as is achieved through active stabilization of the pump and probe arms of the instrument. A temporal resolution of better than 400 as is demonstrated through ATAS measurements at the argon L[Formula: see text]-edges. A spectral resolving power of 1490 is demonstrated through simultaneous absorption measurements at the sulfur L[Formula: see text]- and carbon K-edges of OCS. Coupled with its high SXR photon flux, this instrument paves the way to attosecond time-resolved spectroscopy of organic molecules in the gas phase or in aqueous solutions, as well as thin films of advanced materials. Such measurements will advance the studies of complex systems to the electronic time scale.

5.
Sci Rep ; 13(1): 18874, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914852

RESUMO

We report on an ultrafast infrared optical parametric chirped-pulse amplifier (OPCPA), pumped by a 200-W thin-disk Yb-based regenerative amplifier at a repetition rate of 100 kHz. The OPCPA is tunable in the spectral range 1.4-3.9 [Formula: see text]m, generating up to 23 W of < 100-fs signal and 13 W of < 200-fs idler pulses for infrared spectroscopy, with additional spectral filtering capabilities for Raman spectroscopy. The OPCPA can also yield 19 W of 49-fs 1.75-[Formula: see text]m signal or 5 W of 62-fs 2.8-[Formula: see text]m idler pulses with active carrier-to-envelope-phase (CEP) stabilisation for high-harmonic generation (HHG). We illustrate the versatility of the laser design, catering to various experimental requirements for probing ultrafast science.

6.
Nat Commun ; 9(1): 3723, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30213950

RESUMO

High-harmonic generation (HHG) in gases has been the main enabling technology of attosecond science since its discovery. Recently, HHG from solids has been demonstrated, opening a lively area of research. In contrast, harmonic generation from liquids has so far remained restricted to low harmonics in the visible regime. Here, we report the observation and detailed characterization of extreme ultraviolet HHG from liquid water and several alcohols extending beyond 20 eV. This advance was enabled by the implementation of the recent liquid flat-microjet technology, which we show to facilitate the spatial separation of HHG from the bulk liquid and the surrounding gas phase. We observe striking differences between the HHG spectra of water and several alcohols. A comparison with a strongly-driven few-band model establishes the sensitivity of HHG to the electronic structure of liquids. Our results suggest liquid-phase high-harmonic spectroscopy as a new method for studying the electronic structure and ultrafast scattering processes in liquids.

7.
Science ; 355(6322): 264-267, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28059713

RESUMO

Time-resolved x-ray absorption spectroscopy (TR-XAS) has so far practically been limited to large-scale facilities, to subpicosecond temporal resolution, and to the condensed phase. We report the realization of TR-XAS with a temporal resolution in the low femtosecond range by developing a tabletop high-harmonic source reaching up to 350 electron volts, thus partially covering the spectral region of 280 to 530 electron volts, where water is transmissive. We used this source to follow previously unexamined light-induced chemical reactions in the lowest electronic states of isolated CF4+ and SF6+ molecules in the gas phase. By probing element-specific core-to-valence transitions at the carbon K-edge or the sulfur L-edges, we characterized their reaction paths and observed the effect of symmetry breaking through the splitting of absorption bands and Rydberg-valence mixing induced by the geometry changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA