Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 444(7119): 643-6, 2006 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17122776

RESUMO

Protein expression is a stochastic process that leads to phenotypic variation among cells. The cell-cell distribution of protein levels in microorganisms has been well characterized but little is known about such variability in human cells. Here, we studied the variability of protein levels in human cells, as well as the temporal dynamics of this variability, and addressed whether cells with higher than average protein levels eventually have lower than average levels, and if so, over what timescale does this mixing occur. We measured fluctuations over time in the levels of 20 endogenous proteins in living human cells, tagged by the gene for yellow fluorescent protein at their chromosomal loci. We found variability with a standard deviation that ranged, for different proteins, from about 15% to 30% of the mean. Mixing between high and low levels occurred for all proteins, but the mixing time was longer than two cell generations (more than 40 h) for many proteins. We also tagged pairs of proteins with two colours, and found that the levels of proteins in the same biological pathway were far more correlated than those of proteins in different pathways. The persistent memory for protein levels that we found might underlie individuality in cell behaviour and could set a timescale needed for signals to affect fully every member of a cell population.


Assuntos
Proteínas/metabolismo , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , DNA Topoisomerases Tipo I/metabolismo , Endopeptidases/metabolismo , Proteína HMGA2/metabolismo , Humanos , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Proteínas/genética , Ubiquitina Tiolesterase , Peptidase 7 Específica de Ubiquitina
2.
Nucleic Acids Res ; 38(Database issue): D508-12, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19820112

RESUMO

Recent advances allow tracking the levels and locations of a thousand proteins in individual living human cells over time using a library of annotated reporter cell clones (LARC). This library was created by Cohen et al. to study the proteome dynamics of a human lung carcinoma cell-line treated with an anti-cancer drug. Here, we report the Dynamic Proteomics database for the proteins studied by Cohen et al. Each cell-line clone in LARC has a protein tagged with yellow fluorescent protein, expressed from its endogenous chromosomal location, under its natural regulation. The Dynamic Proteomics interface facilitates searches for genes of interest, downloads of protein fluorescent movies and alignments of dynamics following drug addition. Each protein in the database is displayed with its annotation, cDNA sequence, fluorescent images and movies obtained by the time-lapse microscopy. The protein dynamics in the database represents a quantitative trace of the protein fluorescence levels in nucleus and cytoplasm produced by image analysis of movies over time. Furthermore, a sequence analysis provides a search and comparison of up to 50 input DNA sequences with all cDNAs in the library. The raw movies may be useful as a benchmark for developing image analysis tools for individual-cell dynamic-proteomics. The database is available at http://www.dynamicproteomics.net/.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Proteômica/métodos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Biologia Computacional/tendências , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Biblioteca Gênica , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Estrutura Terciária de Proteína , Software
3.
PLoS One ; 4(4): e4901, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19381343

RESUMO

A current challenge in biology is to understand the dynamics of protein circuits in living human cells. Can one define and test equations for the dynamics and variability of a protein over time? Here, we address this experimentally and theoretically, by means of accurate time-resolved measurements of endogenously tagged proteins in individual human cells. As a model system, we choose three stable proteins displaying cell-cycle-dependant dynamics. We find that protein accumulation with time per cell is quadratic for proteins with long mRNA life times and approximately linear for a protein with short mRNA lifetime. Both behaviors correspond to a classical model of transcription and translation. A stochastic model, in which genes slowly switch between ON and OFF states, captures measured cell-cell variability. The data suggests, in accordance with the model, that switching to the gene ON state is exponentially distributed and that the cell-cell distribution of protein levels can be approximated by a Gamma distribution throughout the cell cycle. These results suggest that relatively simple models may describe protein dynamics in individual human cells.


Assuntos
Proteínas/metabolismo , Calibragem , Ciclo Celular , Humanos , Proteínas/química , Proteínas/genética , RNA Mensageiro/genética , Espectrometria de Fluorescência
4.
Nat Protoc ; 2(6): 1515-27, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17571059

RESUMO

We present a protocol to tag proteins expressed from their endogenous chromosomal locations in individual mammalian cells using central dogma tagging. The protocol can be used to build libraries of cell clones, each expressing one endogenous protein tagged with a fluorophore such as the yellow fluorescent protein. Each round of library generation produces 100-200 cell clones and takes about 1 month. The protocol integrates procedures for high-throughput single-cell cloning using flow cytometry, high-throughput cDNA generation and 3' rapid amplification of cDNA ends, semi-automatic protein localization screening using fluorescent microscopy and freezing cells in 96-well format.


Assuntos
Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Proteínas Luminescentes/análise , Proteínas Luminescentes/química , Biblioteca de Peptídeos , Coloração e Rotulagem/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Fluorescência , Regulação da Expressão Gênica , Humanos
5.
Nat Methods ; 3(7): 525-31, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16791210

RESUMO

We examined cell cycle-dependent changes in the proteome of human cells by systematically measuring protein dynamics in individual living cells. We used time-lapse microscopy to measure the dynamics of a random subset of 20 nuclear proteins, each tagged with yellow fluorescent protein (YFP) at its endogenous chromosomal location. We synchronized the cells in silico by aligning protein dynamics in each cell between consecutive divisions. We observed widespread (40%) cell-cycle dependence of nuclear protein levels and detected previously unknown cell cycle-dependent localization changes. This approach to dynamic proteomics can aid in discovery and accurate quantification of the extensive regulation of protein concentration and localization in individual living cells.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiologia , Proteínas Nucleares/química , Proteínas Nucleares/fisiologia , Proteômica , Proteínas de Bactérias/química , Células Clonais , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Proteínas Luminescentes/química , Biblioteca de Peptídeos
6.
J Exp Biol ; 205(Pt 9): 1209-19, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11948198

RESUMO

Subunit a of V-ATPase in the yeast Saccharomyces cerevisiae, in contrast to its other subunits, is encoded by two genes VPH1 and STV1. While disruption of any other gene encoding the V-ATPase subunits results in growth arrest at pH 7.5, null mutants of Vph1p or Stv1p can grow at this pH. We used a polyclonal antibody to yeast Stv1p and a commercially available monoclonal antibody to Vph1p for analysis of yeast membranes by sucrose gradient fractionation, and two different vital dyes to characterize the phenotype of vph1 triangle up and stv1 triangle up mutants as compared to the double mutant and the wild-type cells. Immunological assays of sucrose gradient fractions revealed that the amount of Stv1p was elevated in the vph1 triangle up strain, and that vacuoles purified by this method with no detectable endosomal contamination contain an assembled V-ATPase complex, but with much lower activity than the wild type. These results suggest that Stv1p compensates for the loss of Vph1p in the vph1 triangle up strain. LysoSensor Green DND-189 was used as a pH sensor to demonstrate unexpected changes in vacuolar acidification in stv1 triangle up as the Vph1p-containing V-ATPase complex is commonly considered to acidify the vacuoles. In the vph1 triangle up strain, the dye revealed slight but definite acidification of the vacuole as well. The lipophilic dye FM4-64 was used as an endocytic marker. We show that the null V-ATPase mutants, as well as the vph1 triangle up one, markedly slow down endocytosis of the dye.


Assuntos
Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , ATPases Vacuolares Próton-Translocadoras/genética , Endocitose , Corantes Fluorescentes , Genes Fúngicos , Concentração de Íons de Hidrogênio , Mutação , Fenótipo , Subunidades Proteicas , Saccharomyces cerevisiae/fisiologia , ATPases Vacuolares Próton-Translocadoras/química , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA