RESUMO
Proteoforms, the different forms of a protein with sequence variations including post-translational modifications (PTMs), execute vital functions in biological systems, such as cell signaling and epigenetic regulation. Advances in top-down mass spectrometry (MS) technology have permitted the direct characterization of intact proteoforms and their exact number of modification sites, allowing for the relative quantification of positional isomers (PI). Protein positional isomers refer to a set of proteoforms with identical total mass and set of modifications, but varying PTM site combinations. The relative abundance of PI can be estimated by matching proteoform-specific fragment ions to top-down tandem MS (MS2) data to localize and quantify modifications. However, the current approaches heavily rely on manual annotation. Here, we present IsoForma, an open-source R package for the relative quantification of PI within a single tool. Benchmarking IsoForma's performance against two existing workflows produced comparable results and improvements in speed. Overall, IsoForma provides a streamlined process for quantifying PI, reduces the analysis time, and offers an essential framework for developing customized proteoform analysis workflows. The software is open source and available at https://github.com/EMSL-Computing/isoforma-lib.
Assuntos
Espectrometria de Massa com Cromatografia Líquida , Isoformas de Proteínas , Processamento de Proteína Pós-Traducional , Software , Espectrometria de Massas em Tandem , Humanos , Isomerismo , Espectrometria de Massa com Cromatografia Líquida/métodos , Isoformas de Proteínas/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodosRESUMO
We report the development of an open-source Python application that provides quantitative and qualitative information from deconvoluted liquid-chromatography top-down mass spectrometry (LC-TDMS) data sets. This simple-to-use program allows users to search masses-of-interest across multiple LC-TDMS runs and provides visualization of their ion intensities and elution characteristics while quantifying their abundances relative to one another. Focusing on proteoform-rich histone proteins from the green microalga Chlamydomonas reinhardtii, we were able to quantify proteoform abundances across different growth conditions and replicates in minutes instead of hours typically needed for manual spreadsheet-based analysis. This resulted in extending previously published qualitive observations on Chlamydomonas histone proteoforms into quantitative ones, leading to an exciting new discovery on alpha-amino termini processing exclusive to histone H2A family members. Lastly, the script was intentionally developed with readability and customizability in mind so that fellow mass spectrometrists can modify the code to suit their lab-specific needs.
Assuntos
Chlamydomonas reinhardtii , Histonas , Espectrometria de Massas , Software , Histonas/química , Histonas/análise , Espectrometria de Massas/métodos , Chlamydomonas reinhardtii/química , Cromatografia Líquida/métodosRESUMO
The development of universal, broadly applicable methods for histone extraction from animal cells and tissues has unlocked the ability to compare these epigenetic-influencing proteins across tissue types, healthy and diseased states, and cancerous versus normal cells. However, for plants and green algae, a quick and easily implemented histone extraction method has yet to be developed. Here, we report an optimized method that provides a unified approach to extract histones for the green microalgal species Chlamydomonas reinhardtii and Scenedesmus dimorphus as well as for maize (corn) leaf tissue. Histone extraction methods include treatment with high salt concentrations and acidification. Preparations of nuclei can be made in â¼3.5â¯h and histones extracted in â¼3.5â¯h either immediately or nuclei may be frozen and histone proteins can be later extracted without a change in histone PTM patterns. To examine the efficiency of the new methods provided, we performed both qualitative and quantitative analysis of salt and acid-extracted whole histone proteins (SAEWH) via SDS-PAGE gel electrophoresis and intact protein mass spectrometry. SDS-PAGE analysis indicated that histone yields decrease when using walled Chlamydomonas strains relative to cell-wall-less mutants. Using top-down mass spectrometry (TDMS) for intact protein analysis, we confirmed the presence of H4K79me1 in multiple algal species; however, this unique modification was not identified in corn leaf tissue and has not been reported elsewhere. TDMS measurements of SAEWH extracts also revealed that oxidation which occurs during the histone extraction process does not increase with exposure of harvested algal cells, their nuclei and the extracted histone samples to light.
Assuntos
Histonas/isolamento & purificação , Espectrometria de Massas/métodos , Proteínas de Plantas/isolamento & purificação , Chlamydomonas reinhardtii/fisiologia , Eletroforese em Gel de Poliacrilamida/métodos , Código das Histonas , Histonas/metabolismo , Microalgas/fisiologia , Fotossíntese/genética , Folhas de Planta/metabolismo , Zea mays/fisiologiaRESUMO
Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.
Assuntos
Genoma Humano , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteoma/química , Proteômica/métodos , Bases de Dados de Proteínas , Humanos , Espectrometria de Massas , Fenótipo , Biossíntese de Proteínas , Isoformas de Proteínas/química , Ubiquitina/químicaRESUMO
The unicellular microalga Chlamydomonas reinhardtii has played an instrumental role in the development of many new fields (bioproducts, biofuels, etc.) as well as the advancement of basic science (photosynthetic apparati, flagellar function, etc.). Chlamydomonas' versatility ultimately derives from the genes encoded in its genome and the way that the expression of these genes is regulated, which is largely influenced by a family of DNA binding proteins called histones. We characterize C. reinhardtii core histones, both variants and their post-translational modifications, by chromatographic separation, followed by top-down mass spectrometry (TDMS). Because TDMS has not been previously used to study Chlamydomonas proteins, we show rampant artifactual protein oxidation using established nuclei purification and histone extraction methods. After addressing oxidation, both histones H3 and H4 are found to each have a single polypeptide sequence that is minimally acetylated and methylated. Surprisingly, we uncover a novel monomethylation at lysine 79 on histone H4 present on all observed molecules. Histone H2B and H2A are found to have two and three variants, respectively, and both are minimally modified. This study provides an updated assessment of the core histone proteins in the green alga C. reinhardtii by top-down mass spectrometry and lays the foundation for further investigation of these essential proteins.
Assuntos
Chlamydomonas reinhardtii/química , Histonas/metabolismo , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional , Acetilação , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Histonas/genética , Metilação , OxirreduçãoRESUMO
MCM2-7 proteins provide essential helicase functions in eukaryotes at chromosomal DNA replication forks. During the G1 phase of the cell cycle, they remain loaded on DNA but are inactive. We have used recombinant methods to show that the Drosophila MCM2-7 helicase is activated in complex with Cdc45 and the four GINS proteins (CMG complex). Biochemical activities of the MCM AAA+ motor are altered and enhanced through such associations: ATP hydrolysis rates are elevated by two orders of magnitude, helicase activity is robust on circular templates, and affinity for DNA substrates is improved. The GINS proteins contribute to DNA substrate affinity and bind specifically to the MCM4 subunit. All pairwise associations among GINS, MCMs, and Cdc45 were detected, but tight association takes place only in the CMG. The onset of DNA replication and unwinding may thus occur through allosteric changes in MCM2-7 affected by the association of these ancillary factors.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/química , DNA/metabolismo , Replicação do DNA , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ativação Enzimática , Modelos Biológicos , Dados de Sequência Molecular , Alinhamento de SequênciaRESUMO
DNA replication licensing is now understood to be the pathway that leads to the assembly of double hexamers of minichromosome maintenance (Mcm2-7) at origin sites. Cell division control protein 45 (Cdc45) and GINS proteins activate the latent Mcm2-7 helicase by inducing allosteric changes through binding, forming a Cdc45/Mcm2-7/GINS (CMG) complex that is competent to unwind duplex DNA. The CMG has an active gate between subunits Mcm2 and Mcm5 that opens and closes in response to nucleotide binding. The consequences of inappropriate Mcm2/5 gate actuation and the role of a side channel formed between GINS/Cdc45 and the outer edge of the Mcm2-7 ring for unwinding have remained unexplored. Here we uncover a novel function for Cdc45. Cross-linking studies trace the path of the DNA with the CMG complex at a fork junction between duplex and single strands with the bound CMG in an open or closed gate conformation. In the closed state, the lagging strand does not pass through the side channel, but in the open state, the leading strand surprisingly interacts with Cdc45. Mutations in the recombination protein J fold of Cdc45 that ablate this interaction diminish helicase activity. These data indicate that Cdc45 serves as a shield to guard against occasional slippage of the leading strand from the core channel.
Assuntos
DNA Helicases/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiologia , DNA/metabolismo , Corantes Fluorescentes , Dados de Sequência Molecular , Homologia de Sequência de AminoácidosRESUMO
We present an updated analysis of the linker and core histone proteins and their proteoforms in the green microalga Chlamydomonas reinhardtii by top-down mass spectrometry (TDMS). The combination of high-resolution liquid chromatographic separation, robust fragmentation, high mass spectral resolution, the application of a custom search algorithm, and extensive manual analysis enabled the characterization of 86 proteoforms across all four core histones H2A, H2B, H3, and H4 and the linker histone H1. All canonical H2A paralogs, which vary in their C-termini, were identified, along with the previously unreported noncanonical variant H2A.Z that had high levels of acetylation and C-terminal truncations. Similarly, a majority of the canonical H2B paralogs were identified, along with a smaller noncanonical variant, H2B.v1, that was highly acetylated. Histone H4 exhibited a novel acetylation profile that differs significantly from that found in other organisms. A majority of H3 was monomethylated at K4 with low levels of co-occuring acetylation, while a small fraction of H3 was trimethylated at K4 with high levels of co-occuring acetylation.
Assuntos
Proteínas de Algas , Chlamydomonas reinhardtii/química , Histonas , Espectrometria de Massas/métodos , Acetilação , Proteínas de Algas/análise , Proteínas de Algas/química , Células Cultivadas , Histonas/análise , Histonas/química , Processamento de Proteína Pós-TraducionalRESUMO
The Cdc45/Mcm2-7/GINS (CMG) helicase separates DNA strands during replication in eukaryotes. How the CMG is assembled and engages DNA substrates remains unclear. Using electron microscopy, we have determined the structure of the CMG in the presence of ATPγS and a DNA duplex bearing a 3' single-stranded tail. The structure shows that the MCM subunits of the CMG bind preferentially to single-stranded DNA, establishes the polarity by which DNA enters into the Mcm2-7 pore, and explains how Cdc45 helps prevent DNA from dissociating from the helicase. The Mcm2-7 subcomplex forms a cracked-ring, right-handed spiral when DNA and nucleotide are bound, revealing unexpected congruencies between the CMG and both bacterial DnaB helicases and the AAA+ motor of the eukaryotic proteasome. The existence of a subpopulation of dimeric CMGs establishes the subunit register of Mcm2-7 double hexamers and together with the spiral form highlights how Mcm2-7 transitions through different conformational and assembly states as it matures into a functional helicase.
Assuntos
Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Proteínas de Ligação a DNA/química , Proteínas de Drosophila/química , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexos Multiproteicos/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/química , DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Eucarióticas/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismoRESUMO
Histone H1 phosphorylation affects chromatin condensation and function, but little is known about how specific phosphorylations impact the function of H1 variants in higher eukaryotes. In this study, we show that specific sites in H1.2 and H1.4 of human cells are phosphorylated only during mitosis or during both mitosis and interphase. Antisera generated to individual H1.2/H1.4 interphase phosphorylations reveal that they are distributed throughout nuclei and enriched in nucleoli. Moreover, interphase phosphorylated H1.4 is enriched at active 45S preribosomal RNA gene promoters and is rapidly induced at steroid hormone response elements by hormone treatment. Our results imply that site-specific interphase H1 phosphorylation facilitates transcription by RNA polymerases I and II and has an unanticipated function in ribosome biogenesis and control of cell growth. Differences in the numbers, structure, and locations of interphase phosphorylation sites may contribute to the functional diversity of H1 variants.
Assuntos
Histonas/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase I/metabolismo , Transcrição Gênica , Linhagem Celular , Núcleo Celular/metabolismo , DNA Ribossômico/metabolismo , Fase G2 , Células HeLa , Humanos , Microscopia de Fluorescência , Fosforilação , Regiões Promotoras GenéticasRESUMO
Methylation of histone H4 at lysine 20 (K20) has been implicated in transcriptional activation, gene silencing, heterochromatin formation, mitosis, and DNA repair. However, little is known about how this modification is regulated or how it contributes to these diverse processes. Metabolic labeling and top-down mass spectrometry reveal that newly synthesized H4 is progressively methylated at K20 during the G(2), M, and G(1) phases of the cell cycle in a process that is largely inescapable and irreversible. Approximately 98% of new H4 becomes dimethylated within two to three cell cycles, and K20 methylation turnover in vivo is undetectable. New H4 is methylated regardless of prior acetylation, and acetylation occurs predominantly on K20-dimethylated H4, refuting the hypothesis that K20 methylation antagonizes H4 acetylation and represses transcription epigenetically. Despite suggestions that it is required for normal mitosis and cell cycle progression, K20 methylation proceeds normally during colchicine treatment. Moreover, delays in PR-Set7 synthesis and K20 methylation which accompany altered cell cycle progression during sodium butyrate treatment appear to be secondary to histone hyperacetylation or other effects of butyrate since depletion of PR-Set7 did not affect cell cycle progression. Together, our data provide an unbiased perspective of the regulation and function of K20 methylation.
Assuntos
Ciclo Celular , Histonas/metabolismo , Acetilação , Deleção de Genes , Regulação da Expressão Gênica , Células HeLa , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Humanos , Lisina/genética , Lisina/metabolismo , Espectrometria de Massas , MetilaçãoRESUMO
Recent advances in mass spectrometry instrumentation, such as FTICR and OrbiTrap, have made it possible to generate high-resolution spectra of entire proteins. While these methods offer new opportunities for performing "top-down" studies of proteins, the computational tools for analyzing top-down data are still scarce. In this paper we investigate the application of spectral alignment to the problem of identifying protein forms in top-down mass spectra (i.e., identifying the modifications, mutations, insertions, and deletions). We demonstrate how spectral alignment efficiently discovers protein forms even in the presence of numerous modifications and how the algorithm can be extended to discover positional isomers from spectra of mixtures of isobaric protein forms.
Assuntos
Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Algoritmos , Histonas/química , Humanos , Reprodutibilidade dos TestesRESUMO
Quantitative proteomics has focused heavily on correlating protein abundances, ratios, and dynamics by developing methods that are protein expression-centric (e.g. isotope coded affinity tag, isobaric tag for relative and absolute quantification, etc.). These methods effectively detect changes in protein abundance but fail to provide a comprehensive perspective of the diversity of proteins such as histones, which are regulated by post-translational modifications. Here, we report the characterization of modified forms of HeLa cell histone H4 with a dynamic range >10(4) using a strictly Top Down mass spectrometric approach coupled with two dimensions of liquid chromatography. This enhanced dynamic range enabled the precise characterization and quantitation of 42 forms uniquely modified by combinations of methylation and acetylation, including those with trimethylated Lys-20, monomethylated Arg-3, and the novel dimethylated Arg-3 (each <1% of all H4 forms). Quantitative analyses revealed distinct trends in acetylation site occupancy depending on Lys-20 methylation state. Because both modifications are dynamically regulated through the cell cycle, we simultaneously investigated acetylation and methylation kinetics through three cell cycle phases and used these data to statistically assess the robustness of our quantitative analysis. This work represents the most comprehensive analysis of histone H4 forms present in human cells reported to date.
Assuntos
Ciclo Celular/fisiologia , Histonas/metabolismo , Espectrometria de Massas , Processamento de Proteína Pós-Traducional/fisiologia , Cromatografia Líquida/métodos , Células HeLa , Histonas/análise , Humanos , Cinética , Espectrometria de Massas/métodos , Proteômica/métodosRESUMO
Post-translational modifications of histone tails direct nuclear processes including transcription, DNA repair, and chromatin packaging. Lysine 20 of histone H4 is mono-, di-, or trimethylated in vivo, but the regulation and significance of these methylations is poorly understood. The SET domain proteins PR-Set7 and Suv4-20 have been implicated in mono- and trimethylation, respectively; however, enzymes that dimethylate lysine 20 have not been identified. Here we report that Drosophila Suv4-20 is a mixed product specificity methyltransferase that dimethylates approximately 90% and trimethylates less than 5% of total H4 at lysine 20 in S2 cells. Trimethylation, but not dimethylation, is reduced in Drosophila larvae lacking HP1, suggesting that an interaction with HP1 regulates the product specificity of Suv4-20 and enrichment of trimethyllysine 20 within heterochromatin. Similar to the Drosophila enzyme, human Suv4-20h1/h2 enzymes generate di- and trimethyllysine 20. PR-Set7 and Suv4-20 are both required for normal levels of methylation, suggesting they have non-redundant functions. Alterations in the level of lysine 20 methylation following knock-down or overexpression of Suv4-20 did not affect lysine 16 acetylation, revealing that these two modifications are not competitive in vivo. Depletion of Suv4-20h1/h2 in HeLa cells impaired the formation of 53BP1 foci, suggesting dimethyllysine 20 is required for a proper DNA damage response. Collectively, the data indicate that Suv4-20 generates nearly ubiquitous dimethylation that facilitates the DNA damage response and selective trimethylation that is involved in heterochromatin formation.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Dano ao DNA , Proteínas de Drosophila/química , Células HeLa , Histona-Lisina N-Metiltransferase/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espectrometria de Massas , Metilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53RESUMO
Recent developments in top down mass spectrometry have enabled closely related histone variants and their modified forms to be identified and quantitated with unprecedented precision, facilitating efforts to better understand how histones contribute to the epigenetic regulation of gene transcription and other nuclear processes. It is therefore crucial that intact MS profiles accurately reflect the levels of variants and modified forms present in a given cell type or cell state for the full benefit of such efforts to be realized. Here we show that partial oxidation of Met and Cys residues in histone samples prepared by conventional methods, together with oxidation that can accrue during storage or during chip-based automated nanoflow electrospray ionization, confounds MS analysis by altering the intact MS profile as well as hindering posttranslational modification localization after MS/MS. We also describe an optimized performic acid oxidation procedure that circumvents these problems without catalyzing additional oxidations or altering the levels of posttranslational modifications common in histones. MS and MS/MS of HeLa cell core histones confirmed that Met and Cys were the only residues oxidized and that complete oxidation restored true intact abundance ratios and significantly enhanced MS/MS data quality. This allowed for the unequivocal detection, at the intact molecule level, of novel combinatorially modified forms of H4 that would have been missed otherwise. Oxidation also enhanced the separation of human core histones by reverse phase chromatography and decreased the levels of salt-adducted forms observed in ESI-FTMS. This method represents a simple and easily automated means for enhancing the accuracy and sensitivity of top down analyses of combinatorially modified forms of histones that may also be of benefit for top down or bottom up analyses of other proteins.
Assuntos
Cromatografia/métodos , Formiatos/química , Histonas/química , Espectrometria de Massas/métodos , Oxigênio/metabolismo , Proteômica/métodos , Cromatografia Líquida de Alta Pressão , Cisteína/química , Dissulfetos/química , Células HeLa , Histonas/metabolismo , Humanos , Peróxido de Hidrogênio/química , Oxigênio/química , Peptídeos/química , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
We developed a platform using hydrophilic interaction chromatography and high-resolution tandem mass spectrometry (MS) for analyses of histone H3 that allows comprehensive characterization of 'histone codes' at the molecular level. We identified over 150 differentially modified forms of histone H3.2 in asynchronously grown and butyrate-treated HeLa cells, revealing pervasive combinatorial modification previously unaccounted for by other techniques and providing a clarified estimate of the molecular diversity of histone H3 in mammals.
Assuntos
Histonas/química , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Cromatografia/métodos , Células HeLa , HumanosRESUMO
Here we show that fragment ion abundances from dissociation of ions created from mixtures of multiply modified histone H4 (11 kDa) or of N-terminal synthetic peptides (2 kDa) correspond to their respective intact ion abundances measured by Fourier transform mass spectrometry. Isomeric mixtures of modified forms of the same protein are resolved and quantitated with a precision of =5% using the relative ratios of their fragment ions, with intact protein ions created by electrospray greatly easing many of the systematic biases that more strongly affect small peptides (e.g., differences in ionization efficiency and ion m/z values). The ion fragmentation methods validated here are directly extensible to intact human proteins to derive quantitative information on the highly related and often isomeric protein forms created by combinatorial arrays of posttranslational modifications.
Assuntos
Histonas/análise , Isoformas de Proteínas/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Células HeLa , Histonas/química , Humanos , Isoformas de Proteínas/química , Proteínas Recombinantes/análise , Proteínas Recombinantes/químicaRESUMO
The basis set of protein forms expressed by human cells from the H2B gene family was determined by Top Down Mass Spectrometry. Using Electron Capture Dissociation for MS/MS of H2B isoforms, direct evidence for the expression of unmodified H2B.Q, H2B.A, H2B.K/T, H2B.J, H2B.E, H2B.B, H2B.F, and monoacetylated H2B.A was obtained from asynchronous HeLa cells. H2B.A was the most abundant form, with the overall expression profile not changing significantly in cells arrested in mitosis by colchicine or during mid-S, mid-G2, G2/M, and mid-G1 phases of the cell cycle. Modest hyperacetylation of H2B family members was observed after sodium butyrate treatment.
Assuntos
Ciclo Celular/efeitos dos fármacos , Histonas/química , Acetilação/efeitos dos fármacos , Sequência de Aminoácidos , Butiratos/farmacologia , Colchicina/toxicidade , Células HeLa , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Isoformas de Proteínas/químicaRESUMO
Top Down analysis revealed that at least fourteen genes encoding histone H2A are coexpressed in HeLa cells. Characterization of these species revealed that all except H2A.Z and H2A.F/Z were alpha-N-acetylated, H2A.O and H2A.C,D,I,N,P were the most abundant, and those exceeding approximately 10% abundance lacked post-translational modifications. This unequivocal identification of H2A forms illustrates the advantages of Top Down Mass Spectrometry and provides a global perspective of H2A regulation through the cell cycle.
Assuntos
Histonas/química , Espectrometria de Massas , Acetilação , Sequência de Aminoácidos , Cromatografia de Afinidade , Células HeLa , Humanos , Dados de Sequência Molecular , Isoformas de Proteínas/químicaRESUMO
The Channichthyidae is a lineage of 16 species in the Notothenioidei, a clade of fishes that dominate Antarctic near-shore marine ecosystems with respect to both diversity and biomass. Among four published studies investigating channichthyid phylogeny, no two have produced the same tree topology, and no published study has investigated the degree of phylogenetic incongruence between existing molecular and morphological datasets. In this investigation we present an analysis of channichthyid phylogeny using complete gene sequences from two mitochondrial genes (ND2 and 16S) sampled from all recognized species in the clade. In addition, we have scored all 58 unique morphological characters used in three previous analyses of channichthyid phylogenetic relationships. Data partitions were analyzed separately to assess the amount of phylogenetic resolution provided by each dataset, and phylogenetic incongruence among data partitions was investigated using incongruence length difference (ILD) tests. We utilized a parsimony-based version of the Shimodaira-Hasegawa test to determine if alternative tree topologies are significantly different from trees resulting from maximum parsimony analysis of the combined partition dataset. Our results demonstrate that the greatest phylogenetic resolution is achieved when all molecular and morphological data partitions are combined into a single maximum parsimony analysis. Also, marginal to insignificant incongruence was detected among data partitions using the ILD. Maximum parsimony analysis of all data partitions combined results in a single tree, and is a unique hypothesis of phylogenetic relationships in the Channichthyidae. In particular, this hypothesis resolves the phylogenetic relationships of at least two species (Channichthys rhinoceratus and Chaenocephalus aceratus), for which there was no consensus among the previous phylogenetic hypotheses. The combined data partition dataset provides substantial statistical power to discriminate among alternative hypotheses of channichthyid relationships. These findings suggest the optimal strategy for investigating the phylogenetic relationships of channichthyids is one that uses all available phylogenetic data in analyses of combined data partitions.