Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33568534

RESUMO

Prolonged medically induced coma (pMIC) is carried out routinely in intensive care medicine. pMIC leads to cognitive impairment, yet the underlying neuromorphological correlates are still unknown, as no direct studies of MIC exceeding ∼6 h on neural circuits exist. Here, we establish pMIC (up to 24 h) in adolescent and mature mice, and combine longitudinal two-photon imaging of cortical synapses with repeated behavioral object recognition assessments. We find that pMIC affects object recognition, and that it is associated with enhanced synaptic turnover, generated by enhanced synapse formation during pMIC, while the postanesthetic period is dominated by synaptic loss. Our results demonstrate major side effects of prolonged anesthesia on neural circuit structure.


Assuntos
Anestesia Geral/efeitos adversos , Encéfalo/patologia , Coma/patologia , Animais , Encéfalo/fisiopatologia , Cognição , Coma/fisiopatologia , Feminino , Masculino , Camundongos , Plasticidade Neuronal , Sinapses/patologia
2.
J Neurosci ; 39(43): 8562-8575, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31427393

RESUMO

Understanding seizure formation and spread remains a critical goal of epilepsy research. We used fast in vivo two-photon calcium imaging in male mouse neocortex to reconstruct, with single-cell resolution, the dynamics of acute (4-aminopyridine) focal cortical seizures as they originate within a spatially confined seizure initiation site (intrafocal region), and subsequently propagate into neighboring cortical areas (extrafocal region). We find that seizures originate as local neuronal ensembles within the initiation site. This abnormal hyperactivity engages increasingly larger areas in a saltatory fashion until it breaks into neighboring cortex, where it proceeds smoothly and is then detected electrophysiologically (LFP). Interestingly, PV inhibitory interneurons have spatially heterogeneous activity in intrafocal and extrafocal territories, ruling out a simple role of inhibition in seizure formation and spread. We propose a two-step model for the progression of focal seizures, where neuronal ensembles activate first, generating a microseizure, followed by widespread neural activation in a traveling wave through neighboring cortex during macroseizures.SIGNIFICANCE STATEMENT We have used calcium imaging in mouse sensory cortex in vivo to reconstruct the onset of focal seizures elicited by local injection of the chemoconvulsant 4-aminopyridine. We demonstrate at cellular resolution that acute focal seizures originate as increasingly synchronized local neuronal ensembles. Because of its spatial confinement, this process may at first be undetectable even by nearby LFP electrodes. Further, we establish spatial footprints of local neural subtype activity that correspond to consecutive steps of seizure microprogression. Such footprints could facilitate determining the recording location (e.g., inside/outside an epileptogenic focus) in high-resolution studies, even in the absence of a priori knowledge about where exactly a seizure started.


Assuntos
Neocórtex/fisiopatologia , Rede Nervosa/fisiopatologia , Neurônios/fisiologia , Convulsões/fisiopatologia , Animais , Cálcio/metabolismo , Eletroencefalografia , Masculino , Camundongos
3.
Proc Natl Acad Sci U S A ; 113(15): 3938-43, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035935

RESUMO

The negatively charged nitrogen vacancy (NV(-)) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV(-) state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.


Assuntos
Fluorescência , Nanodiamantes/química , Nitrogênio/química , Eletricidade Estática , Condutividade Elétrica , Técnicas Eletroquímicas
4.
PLoS Comput Biol ; 13(8): e1005685, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28771570

RESUMO

Progress in modern neuroscience critically depends on our ability to observe the activity of large neuronal populations with cellular spatial and high temporal resolution. However, two bottlenecks constrain efforts towards fast imaging of large populations. First, the resulting large video data is challenging to analyze. Second, there is an explicit tradeoff between imaging speed, signal-to-noise, and field of view: with current recording technology we cannot image very large neuronal populations with simultaneously high spatial and temporal resolution. Here we describe multi-scale approaches for alleviating both of these bottlenecks. First, we show that spatial and temporal decimation techniques based on simple local averaging provide order-of-magnitude speedups in spatiotemporally demixing calcium video data into estimates of single-cell neural activity. Second, once the shapes of individual neurons have been identified at fine scale (e.g., after an initial phase of conventional imaging with standard temporal and spatial resolution), we find that the spatial/temporal resolution tradeoff shifts dramatically: after demixing we can accurately recover denoised fluorescence traces and deconvolved neural activity of each individual neuron from coarse scale data that has been spatially decimated by an order of magnitude. This offers a cheap method for compressing this large video data, and also implies that it is possible to either speed up imaging significantly, or to "zoom out" by a corresponding factor to image order-of-magnitude larger neuronal populations with minimal loss in accuracy or temporal resolution.


Assuntos
Encéfalo/diagnóstico por imagem , Biologia Computacional/métodos , Processamento de Imagem Assistida por Computador/métodos , Neurônios/citologia , Algoritmos , Animais , Camundongos , Neurofisiologia , Peixe-Zebra
5.
Opt Lett ; 41(5): 855-8, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26974063

RESUMO

Increasing the volumetric imaging speed of light-sheet microscopy will improve its ability to detect fast changes in neural activity. Here, a system is introduced for brain-wide imaging of neural activity in the larval zebrafish by coupling structured illumination with cubic phase extended depth-of-field (EDoF) pupil encoding. This microscope enables faster light-sheet imaging and facilitates arbitrary plane scanning-removing constraints on acquisition speed, alignment tolerances, and physical motion near the sample. The usefulness of this method is demonstrated by performing multi-plane calcium imaging in the fish brain with a 416×832×160 µm field of view at 33 Hz. The optomotor response behavior of the zebrafish is monitored at high speeds, and time-locked correlations of neuronal activity are resolved across its brain.


Assuntos
Cálcio/metabolismo , Luz , Microscopia/métodos , Neurônios/metabolismo , Animais , Encéfalo/citologia , Caenorhabditis elegans , Imagem Molecular
6.
Nat Methods ; 9(12): 1202-5, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23142873

RESUMO

We demonstrate a two-photon optogenetic method that generates action potentials in neurons with single-cell precision, using the red-shifted opsin C1V1(T). We applied the method to optically map synaptic circuits in mouse neocortical brain slices and to activate small dendritic regions and individual spines. Using a spatial light modulator, we split the laser beam onto several neurons and performed simultaneous optogenetic activation of selected neurons in three dimensions.


Assuntos
Espinhas Dendríticas/fisiologia , Neurônios/fisiologia , Fótons , Potenciais de Ação/fisiologia , Animais , Camundongos , Opsinas , Optogenética , Técnicas de Patch-Clamp
7.
Nat Methods ; 9(12): 1171-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23169303

RESUMO

Optogenetics with microbial opsin genes has enabled high-speed control of genetically specified cell populations in intact tissue. However, it remains a challenge to independently control subsets of cells within the genetically targeted population. Although spatially precise excitation of target molecules can be achieved using two-photon laser-scanning microscopy (TPLSM) hardware, the integration of two-photon excitation with optogenetics has thus far required specialized equipment or scanning and has not yet been widely adopted. Here we take a complementary approach, developing opsins with custom kinetic, expression and spectral properties uniquely suited to scan times typical of the raster approach that is ubiquitous in TPLSMlaboratories. We use a range of culture, slice and mammalian in vivo preparations to demonstrate the versatility of this toolbox, and we quantitatively map parameter space for fast excitation, inhibition and bistable control. Together these advances may help enable broad adoption of integrated optogenetic and TPLSMtechnologies across experimental fields and systems.


Assuntos
Microscopia Confocal/instrumentação , Neurônios/fisiologia , Opsinas/genética , Optogenética , Animais , Células Cultivadas , Desenho de Equipamento , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Fótons , Transfecção
8.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328224

RESUMO

The goal of this protocol is to enable better characterisation of multiphoton microscopy hardware across a large user base. The scope of this protocol is purposefully limited to focus on hardware, touching on software and data analysis routines only where relevant. The intended audiences are scientists using and building multiphoton microscopes in their laboratories. The goal is that any scientist, not only those with optical expertise, can test whether their multiphoton microscope is performing well and producing consistent data over the lifetime of their system.

9.
bioRxiv ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38293120

RESUMO

Gliomas are highly aggressive brain tumors characterized by poor prognosis and composed of diffusely infiltrating tumor cells that intermingle with non-neoplastic cells in the tumor microenvironment, including neurons. Neurons are increasingly appreciated as important reactive components of the glioma microenvironment, due to their role in causing hallmark glioma symptoms, such as cognitive deficits and seizures, as well as their potential ability to drive glioma progression. Separately, mTOR signaling has been shown to have pleiotropic effects in the brain tumor microenvironment, including regulation of neuronal hyperexcitability. However, the local cellular-level effects of mTOR inhibition on glioma-induced neuronal alterations are not well understood. Here we employed neuron-specific profiling of ribosome-bound mRNA via 'RiboTag,' morphometric analysis of dendritic spines, and in vivo calcium imaging, along with pharmacological mTOR inhibition to investigate the impact of glioma burden and mTOR inhibition on these neuronal alterations. The RiboTag analysis of tumor-associated excitatory neurons showed a downregulation of transcripts encoding excitatory and inhibitory postsynaptic proteins and dendritic spine development, and an upregulation of transcripts encoding cytoskeletal proteins involved in dendritic spine turnover. Light and electron microscopy of tumor-associated excitatory neurons demonstrated marked decreases in dendritic spine density. In vivo two-photon calcium imaging in tumor-associated excitatory neurons revealed progressive alterations in neuronal activity, both at the population and single-neuron level, throughout tumor growth. This in vivo calcium imaging also revealed altered stimulus-evoked somatic calcium events, with changes in event rate, size, and temporal alignment to stimulus, which was most pronounced in neurons with high-tumor burden. A single acute dose of AZD8055, a combined mTORC1/2 inhibitor, reversed the glioma-induced alterations on the excitatory neurons, including the alterations in ribosome-bound transcripts, dendritic spine density, and stimulus evoked responses seen by calcium imaging. These results point to mTOR-driven pathological plasticity in neurons at the infiltrative margin of glioma - manifested by alterations in ribosome-bound mRNA, dendritic spine density, and stimulus-evoked neuronal activity. Collectively, our work identifies the pathological changes that tumor-associated excitatory neurons experience as both hyperlocal and reversible under the influence of mTOR inhibition, providing a foundation for developing therapies targeting neuronal signaling in glioma.

10.
Ann Neurol ; 71(1): 68-75, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22275253

RESUMO

OBJECTIVE: There is enormous clinical potential in exploiting the spatial and temporal resolution of optical techniques to modulate pathophysiological neuronal activity, especially intractable focal epilepsy. We have recently utilized a new ruthenium-based caged compound, ruthenium-bipyridine-triphenylphosphine-γ-aminobutyric acid (RuBi-GABA), which releases GABA when exposed to blue light, to rapidly terminate paroxysmal activity in vitro and in vivo. METHODS: The convulsant 4-aminopyridine was used to induce interictal activity and seizures in rat neocortical slices and anesthetized rats. We examined the effect of blue light, generated by a small, light-emitting diode (LED), on the frequency and duration of ictal activity in the presence and absence of RuBi-GABA. RESULTS: Neither blue light alone, nor low concentrations of RuBi-GABA, affected interictal activity or baseline electrical activity in neocortical slices. However, brief, blue illumination of RuBi-GABA, using our LED, dramatically reduced extracellular spikes and bursts. More impressively, illumination of locally applied RuBi-GABA rapidly terminated in vivo seizures induced by topical application of 4-aminopyridine. The RuBi-GABA effect was blocked by the GABA(A) antagonist picrotoxin, but not duplicated by direct application of GABA. INTERPRETATION: This is the first example of optical control of in vivo epilepsy, proving that there is sufficient cortical light penetration from an LED and diffusion of caged GABA to quickly terminate intense focal seizures. We are aware that many obstacles need to be overcome before this technique can be translated to patients, but at the moment, this represents a feasible method for harnessing optical techniques to fabricate an implantable device for the therapy of neocortical epilepsy.


Assuntos
Portadores de Fármacos/administração & dosagem , Epilepsias Parciais/tratamento farmacológico , Estimulação Luminosa/métodos , Rutênio/administração & dosagem , Ácido gama-Aminobutírico/administração & dosagem , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Epilepsias Parciais/fisiopatologia , Masculino , Neocórtex/efeitos dos fármacos , Neocórtex/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
11.
Opt Express ; 21(13): 16007-21, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23842387

RESUMO

Imaging three-dimensional structures represents a major challenge for conventional microscopies. Here we describe a Spatial Light Modulator (SLM) microscope that can simultaneously address and image multiple targets in three dimensions. A wavefront coding element and computational image processing enables extended depth-of-field imaging. High-resolution, multi-site three-dimensional targeting and sensing is demonstrated in both transparent and scattering media over a depth range of 300-1,000 microns.

12.
bioRxiv ; 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36865311

RESUMO

Visual processing is strongly influenced by context. Stimuli that deviate from contextual regularities elicit augmented responses in primary visual cortex (V1). These heightened responses, known as "deviance detection," require both inhibition local to V1 and top-down modulation from higher areas of cortex. Here we investigated the spatiotemporal mechanisms by which these circuit elements interact to support deviance detection. Local field potential recordings in mice in anterior cingulate area (ACa) and V1 during a visual oddball paradigm showed that interregional synchrony peaks in the theta/alpha band (6-12 Hz). Two-photon imaging in V1 revealed that mainly pyramidal neurons exhibited deviance detection, while vasointestinal peptide-positive interneurons (VIPs) increased activity and somatostatin-positive interneurons (SSTs) decreased activity (adapted) to redundant stimuli (prior to deviants). Optogenetic drive of ACa-V1 inputs at 6-12 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of VIP interneurons disrupted ACa-V1 synchrony and deviance detection responses in V1. These results outline spatiotemporal and interneuron-specific mechanisms of top-down modulation that support visual context processing.

13.
Cell Rep ; 42(9): 113133, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37708021

RESUMO

Visual stimuli that deviate from the current context elicit augmented responses in the primary visual cortex (V1). These heightened responses, known as "deviance detection," require local inhibition in the V1 and top-down input from the anterior cingulate area (ACa). Here, we investigated the mechanisms by which the ACa and V1 interact to support deviance detection. Local field potential recordings in mice during an oddball paradigm showed that ACa-V1 synchrony peaks in the theta/alpha band (≈10 Hz). Two-photon imaging in the V1 revealed that mainly pyramidal neurons exhibited deviance detection, while contextually redundant stimuli increased vasoactive intestinal peptide (VIP)-positive interneuron (VIP) activity and decreased somatostatin-positive interneuron (SST) activity. Optogenetic drive of ACa-V1 inputs at 10 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of V1-VIPs disrupted Aca-V1 synchrony and deviance detection in the V1. These results outline temporal and interneuron-specific mechanisms of top-down modulation that support visual context processing.


Assuntos
Córtex Cerebral , Percepção Visual , Animais , Camundongos , Percepção Visual/fisiologia , Córtex Cerebral/metabolismo , Células Piramidais/metabolismo , Interneurônios/metabolismo , Optogenética , Peptídeo Intestinal Vasoativo/metabolismo
14.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745388

RESUMO

A number of calcium imaging methods have been developed to monitor the activity of large populations of neurons. One particularly promising approach, Bessel imaging, captures neural activity from a volume by projecting within the imaged volume onto a single imaging plane, therefore effectively mixing signals and increasing the number of neurons imaged per pixel. These signals must then be computationally demixed to recover the desired neural activity. Unfortunately, currently-available demixing methods can perform poorly in the regime of high imaging density (i.e., many neurons per pixel). In this work we introduce a new pipeline (maskNMF) for demixing dense calcium imaging data. The main idea is to first denoise and temporally sparsen the observed video; this enhances signal strength and reduces spatial overlap significantly. Next we detect neurons in the sparsened video using a neural network trained on a library of neural shapes. These shapes are derived from segmented electron microscopy images input into a Bessel imaging model; therefore no manual selection of "good" neural shapes from the functional data is required here. After cells are detected, we use a constrained non-negative matrix factorization approach to demix the activity, using the detected cells' shapes to initialize the factorization. We test the resulting pipeline on both simulated and real datasets and find that it is able to achieve accurate demixing on denser data than was previously feasible, therefore enabling faithful imaging of larger neural populations. The method also provides good results on more "standard" two-photon imaging data. Finally, because much of the pipeline operates on a significantly compressed version of the raw data and is highly parallelizable, the algorithm is fast, processing large datasets faster than real time.

15.
iScience ; 26(3): 106247, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36926653

RESUMO

Atypical regulation of inflammation has been proposed in the etiology of autism spectrum disorder (ASD); however, measuring the temporal profile of fetal inflammation associated with future ASD diagnosis has not been possible. Here, we present a method to generate approximately daily profiles of prenatal and early childhood inflammation as measured by developmentally archived C-reactive protein (CRP) in incremental layers of deciduous tooth dentin. In our discovery population, a group of Swedish twins, we found heightened inflammation in the third trimester in children with future ASD diagnosis relative to controls (n = 66; 14 ASD cases; critical window: -90 to -50 days before birth). In our replication study, in the US, we observed a similar increase in CRP in ASD cases during the third trimester (n = 47; 23 ASD cases; -128 to -21 days before birth). Our results indicate that the third trimester is a critical period of atypical fetal inflammatory regulation in ASD.

16.
Neuron ; 110(5): 783-794.e6, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34990571

RESUMO

Hippocampal place cells underlie spatial navigation and memory. Remarkably, CA1 pyramidal neurons can form new place fields within a single trial by undergoing rapid plasticity. However, local feedback circuits likely restrict the rapid recruitment of individual neurons into ensemble representations. This interaction between circuit dynamics and rapid feature coding remains unexplored. Here, we developed "all-optical" approaches combining novel optogenetic induction of rapidly forming place fields with 2-photon activity imaging during spatial navigation in mice. We find that induction efficacy depends strongly on the density of co-activated neurons. Place fields can be reliably induced in single cells, but induction fails during co-activation of larger subpopulations due to local circuit constraints imposed by recurrent inhibition. Temporary relief of local inhibition permits the simultaneous induction of place fields in larger ensembles. We demonstrate the behavioral implications of these dynamics, showing that our ensemble place field induction protocol can enhance subsequent spatial association learning.


Assuntos
Hipocampo , Células de Lugar , Animais , Região CA1 Hipocampal/fisiologia , Retroalimentação , Hipocampo/fisiologia , Camundongos , Neurônios/fisiologia , Células Piramidais/fisiologia
17.
Neurophotonics ; 9(Suppl 1): 013001, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35493335

RESUMO

Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.

18.
Neurophotonics ; 9(Suppl 2): S24001, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36052058

RESUMO

This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.

19.
Neurophotonics ; 8(4): 040101, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34950748

RESUMO

Forthcoming status report articles provide updates on microscopy and on diffuse optical imaging in neurophotonics.

20.
PLoS One ; 16(9): e0257464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34529736

RESUMO

Despite the development of effective vaccines against SARS-CoV-2, epidemiological control of the virus is still challenging due to slow vaccine rollouts, incomplete vaccine protection to current and emerging variants, and unwillingness to get vaccinated. Therefore, frequent testing of individuals to identify early SARS-CoV-2 infections, contact-tracing and isolation strategies remain crucial to mitigate viral spread. Here, we describe WHotLAMP, a rapid molecular test to detect SARS-CoV-2 in saliva. WHotLAMP is simple to use, highly sensitive (~4 viral particles per microliter of saliva) and specific, as well as inexpensive, making it ideal for frequent screening. Moreover, WHotLAMP does not require toxic chemicals or specialized equipment and thus can be performed in point-of-care settings, and may also be adapted for resource-limited environments or home use. While applied here to SARS-CoV-2, WHotLAMP can be modified to detect other pathogens, making it adaptable for other diagnostic assays, including for use in future outbreaks.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , RNA Viral/genética , SARS-CoV-2/genética , Saliva/virologia , COVID-19/epidemiologia , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/instrumentação , Epidemias/prevenção & controle , Humanos , Sistemas Automatizados de Assistência Junto ao Leito/estatística & dados numéricos , RNA Viral/isolamento & purificação , Reprodutibilidade dos Testes , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA