Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Evol Biol ; 33(4): 524-533, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31961983

RESUMO

Fecundity selection is a critical component of fitness and a major driver of adaptive evolution. Trade-offs between parasite mortality and host resources are likely to impose a selection pressure on parasite fecundity, but this is little studied in natural systems. The 'fecundity advantage hypothesis' predicts female-biased sexual size dimorphism whereby larger females produce more offspring. Parasitic insects are useful for exploring the interplay between host resource availability and parasite fecundity, because female body size is a reliable proxy for fecundity in insects. Here we explore temporal changes in body size in the myiasis-causing parasite Philornis downsi (Diptera: Muscidae) on the Galápagos Islands under conditions of earlier in-nest host mortality. We aim to investigate the effects of decreasing host resources on parasite body size and fecundity. Across a 12-year period, we observed a mean of c. 17% P. downsi mortality in host nests with 55 ± 6.2% host mortality and a trend of c. 66% higher host mortality throughout the study period. Using specimens from 116 Darwin's finch nests (Passeriformes: Thraupidae) and 114 traps, we found that over time, P. downsi pupae mass decreased by c. 32%, and male (c. 6%) and female adult size (c. 11%) decreased. Notably, females had c. 26% smaller abdomens in later years, and female abdomen size was correlated with number of eggs. Our findings imply natural selection for faster P. downsi pupation and consequently smaller body size and lower parasite fecundity in this newly evolving host-parasite system.


Assuntos
Fertilidade/genética , Tentilhões/parasitologia , Interações Hospedeiro-Parasita , Muscidae/genética , Seleção Genética , Animais , Tamanho Corporal , Feminino , Masculino
2.
Proc Biol Sci ; 286(1904): 20190461, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31185871

RESUMO

Introduced parasites that alter their host's mating signal can change the evolutionary trajectory of a species through sexual selection. Darwin's Camarhynchus finches are threatened by the introduced fly Philornis downsi that is thought to have accidentally arrived on the Galapagos Islands during the 1960s. The P. downsi larvae feed on the blood and tissue of developing finches, causing on average approximately 55% in-nest mortality and enlarged naris size in survivors. Here we test if enlarged naris size is associated with song characteristics and vocal deviation in the small tree finch ( Camarhynchus parvulus), the critically endangered medium tree finch ( C. pauper) and the recently observed hybrid tree finch group ( Camarhynchus hybrids). Male C. parvulus and C. pauper with enlarged naris size produced song with lower maximum frequency and greater vocal deviation, but there was no significant association in hybrids. Less vocal deviation predicted faster pairing success in both parental species. Finally, C. pauper males with normal naris size produced species-specific song, but male C. pauper with enlarged naris size had song that was indistinguishable from other tree finches. When parasites disrupt host mating signal, they may also facilitate hybridization. Here we show how parasite-induced naris enlargement affects vocal quality, resulting in blurred species mating signals.


Assuntos
Comunicação Animal , Tentilhões/parasitologia , Preferência de Acasalamento Animal , Muscidae/fisiologia , Animais , Evolução Biológica , Equador , Tentilhões/anatomia & histologia , Tentilhões/fisiologia , Hibridização Genética , Larva , Fenótipo , Especificidade da Espécie
3.
Ecol Evol ; 13(5): e10026, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153022

RESUMO

The ecology and evolution of prey populations are influenced by predation and predation risk. Our understanding of predator-prey relationships between sharks and dolphins is incomplete due to the difficulties in observing predatory events directly. Shark-inflicted wounds are often seen on dolphin bodies, which can provide an indirect measure of predation pressure. We used photographs of Australian humpback and snubfin dolphins from north, central, and south Queensland to assess the incidence of shark-inflicted bite injuries and to examine interspecific differences in bite injuries and their relationship with group sizes, habitat features, and geographical locations characteristic of where these individuals occurred. The incidence of shark-inflicted scarring did not differ between species (χ 2 = 0.133, df = 1, p = .715), with 33.3% of snubfin and 24.1% of humpback dolphins showing evidence of shark bites when data were pooled across all three study sites. Generalized additive models indicated that dolphins closer to the coast, with greater photographic coverage, and in north Queensland were more likely to have a shark-inflicted bite injury. The similar incidence of shark-inflicted wounds found on snubfin and humpback dolphins suggests both are subject to comparable predation pressure from sharks in the study region. Results highlight the importance that habitat features such as distance to the coast and geographical location could have in predation risk of dolphins from sharks, as well as the importance of considering photographic coverage when assessing the incidence of shark-inflicted bites on dolphins or other marine animals. This study serves as a baseline for future studies on shark-dolphin interactions in Queensland and into how predation may influence dolphin habitat usage, group living, and behavior.

4.
Evol Appl ; 16(1): 126-133, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699128

RESUMO

Knowledge of an animal's chronological age is crucial for understanding and predicting population demographics, survival and reproduction, but accurate age determination for many wild animals remains challenging. Previous methods to estimate age require invasive procedures, such as tooth extraction to analyse growth layers, which are difficult to carry out with large, mobile animals such as cetaceans. However, recent advances in epigenetic methods have opened new avenues for precise age determination. These 'epigenetic clocks' present a less invasive alternative and can provide age estimates with unprecedented accuracy. Here, we present a species-specific epigenetic clock based on skin tissue samples for a population of Indo-Pacific bottlenose dolphins (Tursiops aduncus) in Shark Bay, Western Australia. We measured methylation levels at 37,492 cytosine-guanine sites (CpG sites) in 165 samples using the mammalian methylation array. Chronological age estimates with an accuracy of ±1 year were available for 68 animals as part of a long-term behavioral study of this population. Using these samples with known age, we built an elastic net model with Leave-One-Out-Cross-Validation, which retained 43 CpG sites, providing an r = 0.86 and median absolute age error (MAE) = 2.1 years (5% of maximum age). This model was more accurate for our data than the previously published methylation clock based on skin samples of common bottlenose dolphins (T. truncatus: r = 0.83, MAE = 2.2) and the multi-species odontocete methylation clock (r = 0.68, MAE = 6.8), highlighting that species-specific clocks can have superior performance over those of multi-species assemblages. We further developed an epigenetic sex estimator, predicting sex with 100% accuracy. As age and sex are critical parameters for the study of animal populations, this clock and sex estimator will provide a useful tool for extracting life history information from skin samples rather than long-term observational data for free-ranging Indo-Pacific bottlenose dolphins worldwide.

5.
Ecol Evol ; 12(5): e8937, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646312

RESUMO

Ecological niche theory predicts the coexistence of closely related species is promoted by resource partitioning in space and time. Australian snubfin (Orcaella heinsohni) and humpback (Sousa sahulensis) dolphins live in sympatry throughout most of their range in northern Australian waters. We compared stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in their skin to investigate resource partitioning between these ecologically similar species. Skin samples were collected from live Australian snubfin (n = 31) and humpback dolphins (n = 23) along the east coast of Queensland in 2014-2015. Both species had similar δ13C and δ15N values and high (>50%) isotopic niche space overlap, suggesting that they feed at similar trophic levels, have substantial dietary overlap, and rely on similar basal food resources. Despite similarities, snubfin dolphins were more likely to have a larger δ15N value than humpback dolphins, indicating they may forage on a wider diversity of prey. Humpback dolphins were more likely to have a larger δ13C range suggesting they may forage on a wider range of habitats. Overall, results suggest that subtle differences in habitat use and prey selection are likely the principal resource partitioning mechanisms enabling the coexistence of Australian snubfin and humpback dolphins.

6.
Biology (Basel) ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36290319

RESUMO

The quantification of a species' trophic niche is important to understand the species ecology and its interactions with the ecosystem it resides in. Despite the high frequency of long-finned pilot whale (Globicephala melas edwardii) strandings on the Aotearoa New Zealand coast, their trophic niche remains poorly understood. To assess the isotopic niche of G. m. edwardii within New Zealand, ontogenetic (sex, total body length, age, maturity status, reproductive group) and spatiotemporal (stranding location, stranding event, and stranding year) variation were investigated. Stable isotopes of carbon (δ13C) and nitrogen (δ15N) were examined from skin samples of 125 G. m. edwardii (67 females and 58 males) collected at mass-stranding events at Onetahua Farewell Spit in 2009 (n = 20), 2011 (n = 20), 2014 (n = 27) and 2017 (n = 20) and at Rakiura Stewart Island in 2010 (n = 19) and 2011 (n = 19). Variations in δ34S values were examined for a subset of 36 individuals. General additive models revealed that stranding event was the strongest predictor for δ13C and δ15N values, whilst sex was the strongest predictor of δ34S isotopic values. Although similar within years, δ13C values were lower in 2014 and 2017 compared to all other years. Furthermore, δ15N values were higher within Farewell Spit 2017 compared to any other stranding event. This suggests that the individuals stranded in Farewell Spit in 2017 may have been feeding at a higher trophic level, or that the nitrogen baseline may have been higher in 2017 than in other years. Spatiotemporal differences explained isotopic variation of G. m. edwardii in New Zealand waters better than ontogenetic factors.

7.
Mar Pollut Bull ; 184: 114183, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36307952

RESUMO

Dredging is an excavation activity used worldwide in marine and freshwater environments to create, deepen, and maintain waterways, harbours, channels, locks, docks, berths, river entrances, and approaches to ports and boat ramps. However, dredging impacts on marine life, including marine mammals (cetaceans, pinnipeds, and sirenians), remain largely unknown. Here we quantified the effect of dredging operations in 2005 and 2019 on the occurrence of Indo-Pacific bottlenose dolphins (Tursiops aduncus) and long-nosed fur seals (Arctocephalus forsteri) in the Port River estuary, a highly urbanized estuary in Adelaide, South Australia. We applied generalised linear models to two long-term sighting datasets (dolphins: 1992-2020, fur seals: 2010-2020), to analyse changes in sighting rates as a function of dredging operations, season, rainfall, and sea surface temperature. We showed that the fluctuations in both dolphin and fur seal occurrences were not correlated with dredging operations, whereas sea surface temperature and season were stronger predictors of both species sighting rates (with seals more prevalent during the colder months, and dolphins in summer). Given the highly industrial environment of the Port River estuary, it is possible that animals in this area are habituated to high noise levels and therefore were not disturbed by dredging operations. Future research would benefit from analysing short-term effects of dredging operations on behaviour, movement patterns and habitat use to determine effects of possible habitat alteration caused by dredging.


Assuntos
Golfinho Nariz-de-Garrafa , Otárias , Focas Verdadeiras , Animais , Estuários , Ecossistema , Cetáceos
8.
Biology (Basel) ; 11(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36009806

RESUMO

Species occurring in sympatry and relying on similar and limited resources may partition resource use to avoid overlap and interspecific competition. Aotearoa, New Zealand hosts an extraordinarily rich marine megafauna, including 50% of the world's cetacean species. In this study, we used carbon and nitrogen stable isotopes as ecological tracers to investigate isotopic niche overlap between 21 odontocete (toothed whale) species inhabiting neritic, mesopelagic, and bathypelagic waters. Results showed a clear niche separation for the bathypelagic Gray's beaked whales (Mesoplodon grayi) and sperm whales (Physeter macrocephalus), but high isotopic niche overlap and potential interspecific competition for neritic and mesopelagic species. For these species, competition could be reduced via temporal or finer-scale spatial segregation or differences in foraging behaviour. This study represents the first insights into the coexistence of odontocetes in a biodiverse hotspot. The data presented here provide a critical baseline to a system already ongoing ecosystem change via ocean warming and subsequent effects on prey abundance and distributions.

9.
R Soc Open Sci ; 6(4): 181616, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31183118

RESUMO

Hybridization can increase adaptive potential when enhanced genetic diversity or novel genetic combinations confer a fitness advantage, such as in the evolution of anti-parasitic mechanisms. Island systems are especially susceptible to invasive parasites due to the lack of defence mechanisms that usually coevolve in long-standing host-parasite relationships. We test if host genetic admixture affects parasite numbers in a novel host-parasite association on the Galápagos Islands. Specifically, we compare the number of Philornis downsi in nests with offspring sired by Darwin's small tree finch (Camarhynchus parvulus), Darwin's medium tree finch (C. pauper) and hybrids of these two species. The number of P. downsi decreased with an increasing genetic admixture of the attending male, and nests of hybrid males had approximately 50% fewer parasites than C. parvulus nests, and approximately 60% fewer parasites than C. pauper nests. This finding indicates that hybridization in this system could be favoured by selection and reveal a mechanism to combat an invasive parasite.

10.
Sci Data ; 6(1): 272, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745083

RESUMO

The 2016 version of the FosSahul database compiled non-human vertebrate megafauna fossil ages from Sahul published up to 2013 in a standardized format. Its purpose was to create a publicly available, centralized, and comprehensive database for palaeoecological investigations of the continent. Such databases require regular updates and improvements to reflect recent scientific findings. Here we present an updated FosSahul (2.0) containing 11,871 dated non-human vertebrate fossil records from the Late Quaternary published up to 2018. Furthermore, we have extended the information captured in the database to include methodological details and have developed an algorithm to automate the quality-rating process. The algorithm makes the quality-rating more transparent and easier to reproduce, facilitating future database extensions and dissemination. FosSahul has already enabled several palaeoecological analyses, and its updated version will continue to provide a centralized organisation of Sahul's fossil records. As an example of an application of the database, we present the temporal pattern in megafauna genus richness inferred from available data in relation to palaeoclimate indices over the past 180,000 years.


Assuntos
Bases de Dados Factuais , Fósseis , Vertebrados , Animais , Austrália
11.
Nat Commun ; 10(1): 5311, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757942

RESUMO

The mechanisms leading to megafauna (>44 kg) extinctions in Late Pleistocene (126,000-12,000 years ago) Australia are highly contested because standard chronological analyses rely on scarce data of varying quality and ignore spatial complexity. Relevant archaeological and palaeontological records are most often also biased by differential preservation resulting in under-representated older events. Chronological analyses have attributed megafaunal extinctions to climate change, humans, or a combination of the two, but rarely consider spatial variation in extinction patterns, initial human appearance trajectories, and palaeoclimate change together. Here we develop a statistical approach to infer spatio-temporal trajectories of megafauna extirpations (local extinctions) and initial human appearance in south-eastern Australia. We identify a combined climate-human effect on regional extirpation patterns suggesting that small, mobile Aboriginal populations potentially needed access to drinkable water to survive arid ecosystems, but were simultaneously constrained by climate-dependent net landscape primary productivity. Thus, the co-drivers of megafauna extirpations were themselves constrained by the spatial distribution of climate-dependent water sources.


Assuntos
Biodiversidade , Mudança Climática , Água Potável , Ecossistema , Extinção Biológica , Migração Humana , Havaiano Nativo ou Outro Ilhéu do Pacífico , Animais , Arqueologia , Austrália , Humanos , Paleontologia , Análise Espacial
12.
Sci Rep ; 9(1): 8044, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142765

RESUMO

Informed conservation management of marine mammals requires an understanding of population size and habitat preferences. In Australia, such data are needed for the assessment and mitigation of anthropogenic impacts, including fisheries interactions, coastal zone developments, oil and gas exploration and mining activities. Here, we present large-scale estimates of abundance, density and habitat preferences of southern Australian bottlenose dolphins (Tursiops sp.) over an area of 42,438km2 within two gulfs of South Australia. Using double-observer platform aerial surveys over four strata and mark-recapture distance sampling analyses, we estimated 3,493 (CV = 0.21; 95%CI = 2,327-5,244) dolphins in summer/autumn, and 3,213 (CV = 0.20; 95%CI = 2,151-4,801) in winter/spring of 2011. Bottlenose dolphin abundance and density was higher in gulf waters across both seasons (0.09-0.24 dolphins/km2) compared to adjacent shelf waters (0.004-0.04 dolphins/km2). The high densities of bottlenose dolphins in the two gulfs highlight the importance of these gulfs as a habitat for the species. Habitat modelling associated bottlenose dolphins with shallow waters, flat seafloor topography, and higher sea surface temperatures (SSTs) in summer/autumn and lower SSTs in winter/spring. Spatial predictions showed high dolphin densities in northern and coastal gulf sections. Distributional data should inform management strategies, marine park planning and environmental assessments of potential anthropogenic threats to this protected species.


Assuntos
Distribuição Animal/fisiologia , Golfinho Nariz-de-Garrafa/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Animais , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Densidade Demográfica , Estações do Ano , Água do Mar , Austrália do Sul , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA