Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
PLoS Genet ; 19(3): e1010468, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862752

RESUMO

The genomic sequence of the horse has been available since 2009, providing critical resources for discovering important genomic variants regarding both animal health and population structures. However, to fully understand the functional implications of these variants, detailed annotation of the horse genome is required. Due to the limited availability of functional data for the equine genome, as well as the technical limitations of short-read RNA-seq, existing annotation of the equine genome contains limited information about important aspects of gene regulation, such as alternate isoforms and regulatory elements, which are either not transcribed or transcribed at a very low level. To solve above problems, the Functional Annotation of the Animal Genomes (FAANG) project proposed a systemic approach to tissue collection, phenotyping, and data generation, adopting the blueprint laid out by the Encyclopedia of DNA Elements (ENCODE) project. Here we detail the first comprehensive overview of gene expression and regulation in the horse, presenting 39,625 novel transcripts, 84,613 candidate cis-regulatory elements (CRE) and their target genes, 332,115 open chromatin regions genome wide across a diverse set of tissues. We showed substantial concordance between chromatin accessibility, chromatin states in different genic features and gene expression. This comprehensive and expanded set of genomics resources will provide the equine research community ample opportunities for studies of complex traits in the horse.


Assuntos
Genoma , Cavalos , Transcriptoma , Cavalos/genética , Animais , Anotação de Sequência Molecular , Especificidade de Órgãos , Cromatina , Elementos Reguladores de Transcrição , Sítio de Iniciação de Transcrição , Análise de Sequência de RNA , Regulação da Expressão Gênica
2.
BMC Genomics ; 25(1): 417, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678201

RESUMO

BACKGROUND: Between 2020 and 2022, eight calves in a Nebraska herd (composite Simmental, Red Angus, Gelbvieh) displayed exercise intolerance during forced activity. In some cases, the calves collapsed and did not recover. Available sire pedigrees contained a paternal ancestor within 2-4 generations in all affected calves. Pedigrees of the calves' dams were unavailable, however, the cows were ranch-raised and retained from prior breeding seasons, where bulls used for breeding occasionally had a common ancestor. Therefore, it was hypothesized that a de novo autosomal recessive variant was causative of exercise intolerance in these calves. RESULTS: A genome-wide association analysis utilizing SNP data from 6 affected calves and 715 herd mates, followed by whole-genome sequencing of 2 affected calves led to the identification of a variant in the gene PYGM (BTA29:g.42989581G > A). The variant, confirmed to be present in the skeletal muscle transcriptome, was predicted to produce a premature stop codon (p.Arg650*). The protein product of PYGM, myophosphorylase, breaks down glycogen in skeletal muscle. Glycogen concentrations were fluorometrically assayed as glucose residues demonstrating significantly elevated glycogen concentrations in affected calves compared to cattle carrying the variant and to wild-type controls. The absence of the PYGM protein product in skeletal muscle was confirmed by immunohistochemistry and label-free quantitative proteomics analysis; muscle degeneration was confirmed in biopsy and necropsy samples. Elevated skeletal muscle glycogen persisted after harvest, resulting in a high pH and dark-cutting beef, which is negatively perceived by consumers and results in an economic loss to the industry. Carriers of the variant did not exhibit differences in meat quality or any measures of animal well-being. CONCLUSIONS: Myophosphorylase deficiency poses welfare concerns for affected animals and negatively impacts the final product. The association of the recessive genotype with dark-cutting beef further demonstrates the importance of genetics to not only animal health but to the quality of their product. Although cattle heterozygous for the variant may not immediately affect the beef industry, identifying carriers will enable selection and breeding strategies to prevent the production of affected calves.


Assuntos
Estudo de Associação Genômica Ampla , Glicogênio Fosforilase Muscular , Animais , Bovinos , Feminino , Masculino , Doenças dos Bovinos/genética , Genes Recessivos , Glicogênio Fosforilase Muscular/genética , Glicogênio Fosforilase Muscular/deficiência , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Linhagem , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
3.
Anim Genet ; 55(3): 344-351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38426585

RESUMO

Bovine familial convulsions and ataxia (BFCA) is considered an autosomal dominant syndrome with incomplete penetrance. Nine Angus calves from the same herd were diagnosed with BFCA within days of birth. Necropsy revealed cerebellar and spinal cord lesions associated with the condition. Parentage testing confirmed that all affected calves had a common sire. The sire was then bred to 36 cows across two herds using artificial insemination, producing an additional 14 affected calves. The objective of this investigation was to identify hypothesized dominant genetic variation underlying the condition. Whole-genome sequencing was performed on the sire, six affected and seven unaffected paternal half-sibling calves and combined with data from 135 unrelated controls. The sire and five of the six affected calves were heterozygous for a nonsense variant (Chr7 g.12367906C>T, c.5073C>T, p.Arg1681*) in CACNA1A. The other affected calves (N = 8) were heterozygous for the variant but it was absent in the other unaffected calves (N = 7) and parents of the sire. This variant was also absent in sequence data from over 6500 other cattle obtained via public repositories and collaborator projects. The variant in CACNA1A is expressed in the cerebellum of the ataxic calves as detected in the transcriptome and was not differentially expressed compared with controls. The CACNA1A protein is part of a highly expressed cerebellar calcium voltage gated channel. The nonsense variant is proposed to cause haploinsufficiency, preventing proper transmission of neuronal signals through the channel and resulting in BFCA.


Assuntos
Ataxia , Canais de Cálcio , Doenças dos Bovinos , Convulsões , Animais , Bovinos/genética , Canais de Cálcio/genética , Ataxia/veterinária , Ataxia/genética , Doenças dos Bovinos/genética , Convulsões/veterinária , Convulsões/genética , Masculino , Feminino , Sequenciamento Completo do Genoma/veterinária , Genes Dominantes , Mutação
4.
Heredity (Edinb) ; 131(2): 96-108, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37308718

RESUMO

Indigenous Iranian horse breeds were evolutionarily affected by natural and artificial selection in distinct phylogeographic clades, which shaped their genomes in several unique ways. The aims of this study were to evaluate the genetic diversity and genomewide selection signatures in four indigenous Iranian horse breeds. We evaluated 169 horses from Caspian (n = 21), Turkmen (n = 29), Kurdish (n = 67), and Persian Arabian (n = 52) populations, using genomewide genotyping data. The contemporary effective population sizes were 59, 98, 102, and 113 for Turkmen, Caspian, Persian Arabian, and Kurdish breeds, respectively. By analysis of the population genetic structure, we classified the north breeds (Caspian and Turkmen) and west/southwest breeds (Persian Arabian and Kurdish) into two phylogeographic clades reflecting their geographic origin. Using the de-correlated composite of multiple selection signal statistics based on pairwise comparisons, we detected a different number of significant SNPs under putative selection from 13 to 28 for the six pairwise comparisons (FDR < 0.05). The identified SNPs under putative selection coincided with genes previously associated with known QTLs for morphological, adaptation, and fitness traits. Our results showed HMGA2 and LLPH as strong candidate genes for height variation between Caspian horses with a small size and the other studied breeds with a medium size. Using the results of studies on human height retrieved from the GWAS catalog, we suggested 38 new putative candidate genes under selection. These results provide a genomewide map of selection signatures in the studied breeds, which represent valuable information for formulating genetic conservation and improved breeding strategies for the breeds.


Assuntos
Variação Genética , Genoma , Humanos , Animais , Cavalos/genética , Irã (Geográfico) , Fenótipo , Filogeografia , Polimorfismo de Nucleotídeo Único , Seleção Genética
5.
Anim Genet ; 54(4): 549-552, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37062854

RESUMO

A white calf, with minimal pigmented markings, was born to two registered Black Angus parents. Given the possibility of an unknown recessive or de novo dominant mutation, whole-genome sequencing was conducted on the trio of individuals. A 3-bp in-frame deletion in MITF was identified; this mutation was unique to the calf but identical to the delR217 variant reported in both humans and murine models of Waardenburg syndrome type 2A and Tietz syndrome. Given the coat color phenotype and identity of the mutation, our data support that this calf represents the first instance of this recurring MITF mutation in cattle.


Assuntos
Doenças dos Bovinos , Fator de Transcrição Associado à Microftalmia , Animais , Bovinos/genética , Humanos , Camundongos , Doenças dos Bovinos/genética , Surdez/genética , Surdez/veterinária , Fator de Transcrição Associado à Microftalmia/genética , Mutação , Fenótipo , Deleção de Sequência , Síndrome de Waardenburg/genética , Síndrome de Waardenburg/veterinária
6.
J Hered ; 113(4): 431-443, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35575262

RESUMO

Long-term sustainability of breeds depends on having sufficient genetic diversity for adaptability to change, whether driven by climatic conditions or by priorities in breeding programs. Genetic diversity in Suffolk sheep in the United States was evaluated in four ways: 1) using genetic relationships from pedigree data [(n = 64 310 animals recorded in the US National Sheep Improvement Program (NSIP)]; 2) using molecular data (n = 304 Suffolk genotyped with the OvineHD BeadChip); 3) comparing Australian (n = 109) and Irish (n = 55) Suffolk sheep to those in the United States using molecular data; and 4) assessing genetic relationships (connectedness) among active Suffolk flocks (n = 18) in NSIP. By characterizing genetic diversity, a goal was to define the structure of a reference population for use for genomic selection strategies in this breed. Pedigree-based mean inbreeding level for the most recent year of available data was 5.5%. Ten animals defined 22.8% of the current gene pool. The effective population size (Ne) ranged from 27.5 to 244.2 based on pedigree and was 79.5 based on molecular data. Expected (HE) and observed (HO) heterozygosity were 0.317 and 0.306, respectively. Model-based population structure included 7 subpopulations. From Principal Component Analysis, countries separated into distinct populations. Within the US population, flocks formed genetically disconnected clusters. A decline in genetic diversity over time was observed from both pedigree and genomic-based derived measures with evidence of population substructure as measured by FST. Using these measures of genetic diversity, a framework for establishing a genomic reference population in US Suffolk sheep engaged in NSIP was proposed.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Animais , Austrália , Variação Genética , Genômica , Genótipo , Endogamia , Seleção Genética , Ovinos/genética
7.
J Hered ; 111(2): 182-193, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-31714577

RESUMO

Small numbers of domestic yak (Bos grunniens) were imported to North America in the late 19th century indirectly from the Qinghai-Tibetan Plateau. Coat color of yak is of interest for fiber production, aesthetics, and as a potential indicator of recent hybridization with cattle. North American yak are classified into 3 major coat color patterns depending upon the presence and extent of white markings. They are further classified by nose pigmentation (black or gray). The aim of this study was to identify loci involved in white patterning and nose pigmentation of North American yak. Genotyping by mass spectrometry of markers identified through Sanger and whole-genome sequencing revealed a 388 kb haplotype of KIT associated in a semi-dominant manner with white coloration in this population of yak. This KIT haplotype is similar to both a haplotype found in white-faced Chinese yak and to haplotypes found in cattle but is divergent from other Bos species such as bison, gaur, and banteng. Melanocortin 1 receptor (MC1R) was implicated as a dominant determinant of black nose color with a single haplotype containing 2 missense mutations perfectly associated with the phenotype. The MC1R haplotype associated with black nose pigment is also similar to cattle haplotypes. No cattle studied, however, shared either of the 2 haplotypes associated with color in yak, suggesting these alleles were introgressed into yak before they were imported to North America. These results provide molecular insight into the history of North American yak and information from which breeders can determine possible color outcomes of matings.


Assuntos
Bovinos/genética , Introgressão Genética , Pigmentação/genética , Proteínas Proto-Oncogênicas c-kit/genética , Receptor Tipo 1 de Melanocortina/genética , Pelo Animal , Animais , Haplótipos , América do Norte , Nariz , Fenótipo
8.
Vet Clin North Am Equine Pract ; 36(2): 195-209, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32654781

RESUMO

The sequencing and assembly of a reference genome for the horse has been revolutionary for investigation of horse health and performance. Next-generation sequencing (NGS) methods represent a second revolution in equine genomics. Researchers can align and compare DNA and RNA sequencing data to the reference genome to explore variation that may contribute or be attributed to disease. NGS has also facilitated the translation of research discovery to clinically relevant applications. This article discusses the history and development of NGS, details some of the available sequencing platforms, and describes currently available applications in the context of both discovery and clinical settings.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Cavalos/genética , Análise de Sequência de DNA/veterinária , Animais , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças dos Cavalos/genética , Análise de Sequência de DNA/métodos
9.
Mamm Genome ; 30(3-4): 81-87, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30788588

RESUMO

A genetic disorder, osteogenesis imperfecta (OI) is broadly characterized by connective tissue abnormalities and bone fragility most commonly attributed to alterations in Type I collagen. Two Red Angus calves by the same sire presented with severe bone and dental fragility, blue sclera, and evidence of in utero fractures consistent with OI congenita. Comparative analyses with human cases suggested the OI in these calves most closely resembled that classified as OI Type II. Due to the phenotypic classification and shared paternity, a dominant, germ-line variant was hypothesized as causative although recessive genotypes were also considered due to a close relationship between the sire and dam of one calf. Whole-genome sequencing revealed the presence of a missense mutation in the alpha 1 chain of collagen Type I (COL1A1), for which both calves were heterozygous. The variant resulted in the substitution of a glycine residue with serine in the triple helical domain of the protein; in this region, glycine normally occupies every third position as is critical for correct formation of the Type I collagen molecule. Allele-specific amplification by droplet digital PCR further quantified the variant at a frequency of nearly 4.4% in the semen of the sire while it was absent in his blood, supporting the hypothesis of a de novo causative variant for which the germ line of the sire was mosaic. The identification of novel variants associated with unwanted phenotypes in livestock is critical as the high prolificacy of breeding stock has the potential to rapidly disseminate undesirable variation.


Assuntos
Doenças dos Bovinos/genética , Mutação em Linhagem Germinativa , Osteogênese Imperfeita/veterinária , Alelos , Animais , Bovinos , Doenças dos Bovinos/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Feminino , Genes Dominantes , Masculino , Mutação de Sentido Incorreto , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Linhagem , Fenótipo
10.
Nature ; 488(7413): 642-6, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22932389

RESUMO

Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement. These networks produce left-right alternation of limbs as well as coordinated activation of flexor and extensor muscles. Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favourable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation.


Assuntos
Marcha/genética , Cavalos/genética , Cavalos/fisiologia , Mutação/genética , Medula Espinal/fisiologia , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Códon sem Sentido/genética , Marcha/fisiologia , Perfilação da Expressão Gênica , Frequência do Gene , Cavalos/classificação , Islândia , Camundongos , Dados de Sequência Molecular , Vias Neurais/fisiologia , Desempenho Psicomotor/fisiologia , Medula Espinal/citologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo
11.
Int J Cancer ; 141(2): 342-353, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28425625

RESUMO

Squamous cell carcinoma (SCC) is the most common cancer of the equine eye, frequently originating at the limbus, with the potential to invade the cornea, cause visual impairment, and result in loss of the eye. Several breeds of horses have a high occurrence of limbal SCC implicating a genetic basis for limbal SCC predisposition. Pedigree analysis in the Haflinger breed supports a simple recessive mode of inheritance and a genome-wide association study (N = 23) identified a 1.5 Mb locus on ECA12 significantly associated with limbal SCC (Pcorrected = 0.04). Sequencing the most physiologically relevant gene from this locus, damage specific DNA binding protein 2 (DDB2), identified a missense mutation (c.1013 C > T p.Thr338Met) that was strongly associated with limbal SCC (P = 3.41 × 10-10 ). Genotyping 42 polymorphisms narrowed the ECA12 candidate interval to 483 kb but did not identify another variant that was more strongly associated. DDB2 binds to ultraviolet light damaged DNA and recruits other proteins to perform global genome nucleotide excision repair. Computational modeling predicts this mutation to be deleterious by altering conformation of the ß loop involved in photolesion recognition. This DDB2 variant was also detected in two other closely related breeds with reported cases of ocular SCC, the Belgian and the Percheron, suggesting it may also be a SCC risk factor in these breeds. Furthermore, in humans xeroderma pigmentosum complementation group E, a disease characterized by sun sensitivity and increased risk of cutaneous SCC and melanomas, is explained by mutations in DDB2. Cross-species comparison remains to be further evaluated.


Assuntos
Carcinoma de Células Escamosas/veterinária , Proteínas de Ligação a DNA/genética , Neoplasias Oculares/veterinária , Doenças dos Cavalos/genética , Limbo da Córnea/patologia , Mutação de Sentido Incorreto , Animais , Carcinoma de Células Escamosas/genética , Biologia Computacional , Dano ao DNA , Proteínas de Ligação a DNA/química , Neoplasias Oculares/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/veterinária , Cavalos , Masculino , Linhagem , Estrutura Secundária de Proteína , Análise de Sequência de DNA/veterinária
12.
Anim Genet ; 47(5): 528-33, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27453069

RESUMO

The Functional Annotation of Animal Genomes (FAANG) Consortium recently held a Gathering On FAANG (GO-FAANG) Workshop in Washington, DC on October 7-8, 2015. This consortium is a grass-roots organization formed to advance the annotation of newly assembled genomes of domesticated and non-model organisms (www.faang.org). The workshop gathered together from around the world a group of 100+ genome scientists, administrators, representatives of funding agencies and commodity groups to discuss the latest advancements of the consortium, new perspectives, next steps and implementation plans. The workshop was streamed live and recorded, and all talks, along with speaker slide presentations, are available at www.faang.org. In this report, we describe the major activities and outcomes of this meeting. We also provide updates on ongoing efforts to implement discussions and decisions taken at GO-FAANG to guide future FAANG activities. In summary, reference datasets are being established under pilot projects; plans for tissue sets, morphological classification and methods of sample collection for different tissues were organized; and core assays and data and meta-data analysis standards were established.


Assuntos
Animais Domésticos/genética , Genoma , Genômica , Animais , Congressos como Assunto , District of Columbia , Cooperação Internacional , Padrões de Referência
13.
PLoS Genet ; 9(1): e1003211, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349635

RESUMO

Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an F(ST)-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse.


Assuntos
Estudo de Associação Genômica Ampla , Cavalos/genética , Miostatina/genética , Seleção Genética , Animais , Evolução Biológica , Cruzamento , Genótipo , Haplótipos , Fenótipo , Polimorfismo de Nucleotídeo Único
14.
PLoS Genet ; 8(1): e1002451, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22253606

RESUMO

An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50-100 kb and reached background levels within 1-2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalski's Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species.


Assuntos
Técnicas de Genotipagem , Cavalos/genética , Perissodáctilos/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Evolução Biológica , Cruzamento , Mapeamento Cromossômico , Frequência do Gene , Ligação Genética , Variação Genética , Haplótipos , Desequilíbrio de Ligação , Filogenia
15.
J Hered ; 105(2): 148-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24293614

RESUMO

A breed known for its versatility, the American Quarter Horse (QH), is increasingly bred for performance in specific disciplines. The impact of selective breeding on the diversity and structure of the QH breed was evaluated using pedigree analysis and genome-wide SNP data from horses representing 6 performance groups (halter, western pleasure, reining, working cow, cutting, and racing). Genotype data (36 037 single nucleotide polymorphisms [SNPs]) from 36 Thoroughbreds were also evaluated with those from the 132 performing QHs to evaluate the Thoroughbred's influence on QH diversity. Results showed significant population structure among all QH performance groups excepting the comparison between the cutting and working cow horses; divergence was greatest between the cutting and racing QHs, the latter of which had a large contribution of Thoroughbred ancestry. Significant coancestry and the potential for inbreeding exist within performance groups, especially when considering the elite performers. Relatedness within performance groups is increasing with popular sires contributing disproportionate levels of variation to each discipline. Expected heterozygosity, inbreeding, F ST, cluster, and haplotype analyses suggest these QHs can be broadly classified into 3 categories: stock, racing, and pleasure/halter. Although the QH breed as a whole contains substantial genetic diversity, current breeding practices have resulted in this variation being sequestered into subpopulations.


Assuntos
Cruzamento , Cavalos/genética , Animais , Análise por Conglomerados , Feminino , Haplótipos , Heterozigoto , Endogamia , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Estados Unidos
16.
J Hered ; 105(2): 163-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24215078

RESUMO

A dominantly inherited gain-of-function mutation in the glycogen synthase (GYS1) gene, resulting in excess skeletal muscle glycogen, has been identified in more than 30 horse breeds. This mutation is associated with the disease Equine Polysaccharide Storage Myopathy Type 1, yet persists at high frequency in some breeds. Under historical conditions of daily work and limited feed, excess muscle glycogen may have been advantageous, driving the increase in frequency of this allele. Fine-scale DNA sequencing in 80 horses and genotype assays in 279 horses revealed a paucity of haplotypes carrying the mutant allele when compared with the wild-type allele. Additionally, we found increased linkage disequilibrium, measured by relative extended haplotype homozygosity, in haplotypes carrying the mutation compared with haplotypes carrying the wild-type allele. Coalescent simulations of Belgian horse populations demonstrated that the high frequency and extended haplotype associated with the GYS1 mutation were unlikely to have arisen under neutrality or due to population demography. In contrast, in Quarter Horses, elevated relative extended haplotype homozygosity was associated with multiple haplotypes and may be the result of recent population expansion or a popular sire effect. These data suggest that the GYS1 mutation underwent historical selection in the Belgian, but not in the Quarter Horse.


Assuntos
Glicogênio Sintase/genética , Cavalos/genética , Seleção Genética , Alelos , Animais , Cruzamento , Predisposição Genética para Doença , Glicogênio/química , Doença de Depósito de Glicogênio/genética , Haplótipos , Homozigoto , Doenças dos Cavalos/genética , Músculo Esquelético/química , Mutação , Análise de Sequência de DNA
17.
Anim Genet ; 45(6): 827-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25160752

RESUMO

Two variants in the equine myostatin gene (MSTN), including a T/C SNP in the first intron and a 227-bp SINE insertion in the promoter, are associated with muscle fiber type proportions in the Quarter Horse (QH) and with the prediction of race distance propensity in the Thoroughbred (TB). Genotypes from these loci, along with 18 additional variants surrounding MSTN, were examined in 301 horses of 14 breeds to evaluate haplotype relationships and diversity. The C allele of intron 1 was found in 12 of 14 breeds at a frequency of 0.27; the SINE was observed in five breeds, but common in only the TB and QH (0.73 and 0.48 respectively). Haplotype data suggest the SINE insertion is contemporary to and arose upon a haplotype containing the intron 1 C allele. Gluteal muscle biopsies of TBs showed a significant association of the intron 1 C allele and SINE with a higher proportion of Type 2B and lower proportion of Type 1 fibers. However, in the Belgian horse, in which the SINE is not present, the intron 1 SNP was not associated with fiber type proportions, and evaluation of fiber type proportions across the Belgian, TB and QH breeds shows the significant effect of breed on fiber type proportions is negated when evaluating horses without the SINE variant. These data suggest the SINE, rather than the intron 1 SNP, is driving the observed muscle fiber type characteristics and is the variant targeted by selection for short-distance racing.


Assuntos
Haplótipos , Cavalos/genética , Fibras Musculares Esqueléticas/classificação , Miostatina/genética , Animais , Cruzamento , Frequência do Gene , Genótipo , Cavalos/classificação , Íntrons , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Elementos Nucleotídeos Curtos e Dispersos
18.
Res Sq ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38645140

RESUMO

Background: Allele-specific expression (ASE) analysis provides a nuanced view of cis-regulatory mechanisms affecting gene expression. Results: An equine ASE analysis was performed, using integrated Iso-seq and short-read RNA sequencing data from four healthy Thoroughbreds (2 mares and 2 stallions) across 9 tissues from the Functional Annotation of Animal Genomes (FAANG) project. Allele expression was quantified by haplotypes from long-read data, with 42,900 allele expression events compared. Within these events, 635 (1.48%) demonstrated ASE, with liver tissue containing the highest proportion. Genetic variants within ASE events were in histone modified regions 64.2% of the time. Validation of allele-specific variants, using a set of 66 equine liver samples from multiple breeds, confirmed that 97% of variants demonstrated ASE. Conclusions: This valuable publicly accessible resource is poised to facilitate investigations into regulatory variation in equine tissues. Our results highlight the tissue-specific nature of allelic imbalance in the equine genome.

19.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260378

RESUMO

Background: Allele-specific expression (ASE) analysis provides a nuanced view of cis-regulatory mechanisms affecting gene expression. Results: In this work, we introduce and highlight the significance of an equine ASE analysis, containing integrated long- and short-read RNA sequencing data, along with insight from histone modification data, from four healthy Thoroughbreds (2 mares and 2 stallions) across 9 tissues. Conclusions: This valuable publicly accessible resource is poised to facilitate investigations into regulatory variation in equine tissues and foster a deeper understanding of the impact of allelic imbalance in equine health and disease at the molecular level.

20.
Metabolites ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38535316

RESUMO

Stress-induced fetal programming diminishes ß2 adrenergic tone, which coincides with intrauterine growth restriction (IUGR) and lifelong metabolic dysfunction. We determined if stimulating ß2 adrenergic activity in IUGR-born lambs would improve metabolic outcomes. IUGR lambs that received daily injections of saline or the ß2 agonist clenbuterol from birth to 60 days were compared with controls from pair-fed thermoneutral pregnancies. As juveniles, IUGR lambs exhibited systemic inflammation and robust metabolic dysfunction, including greater (p < 0.05) circulating TNFα, IL-6, and non-esterified fatty acids, increased (p < 0.05) intramuscular glycogen, reduced (p < 0.05) circulating IGF-1, hindlimb blood flow, glucose-stimulated insulin secretion, and muscle glucose oxidation. Daily clenbuterol fully recovered (p < 0.05) circulating TNFα, IL-6, and non-esterified fatty acids, hindlimb blood flow, muscle glucose oxidation, and intramuscular glycogen. Glucose-stimulated insulin secretion was partially recovered (p < 0.05) in clenbuterol-treated IUGR lambs, but circulating IGF-1 was not improved. Circulating triglycerides and HDL cholesterol were elevated (p < 0.05) in clenbuterol-treated IUGR lambs, despite being normal in untreated IUGR lambs. We conclude that deficient ß2 adrenergic regulation is a primary mechanism for several components of metabolic dysfunction in IUGR-born offspring and thus represents a potential therapeutic target for improving metabolic outcomes. Moreover, benefits from the ß2 agonist were likely complemented by its suppression of IUGR-associated inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA