Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 992
Filtrar
1.
Nature ; 603(7899): 124-130, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197626

RESUMO

A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord1. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing2-4. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies5,6, but how those variants increase risk for disease is unknown. Here we show that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harbouring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Éxons/genética , Demência Frontotemporal/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Neurônios Motores/patologia , Proteínas do Tecido Nervoso
2.
Brain ; 147(4): 1483-1496, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37831661

RESUMO

There is a longstanding ambiguity regarding the clinical diagnosis of dementia syndromes predominantly targeting executive functions versus behaviour and personality. This is due to an incomplete understanding of the macro-scale anatomy underlying these symptomatologies, a partial overlap in clinical features and the fact that both phenotypes can emerge from the same pathology and vice versa. We collected data from a patient cohort of which 52 had dysexecutive Alzheimer's disease, 30 had behavioural variant frontotemporal dementia (bvFTD), seven met clinical criteria for bvFTD but had Alzheimer's disease pathology (behavioural Alzheimer's disease) and 28 had amnestic Alzheimer's disease. We first assessed group-wise differences in clinical and cognitive features and patterns of fluorodeoxyglucose (FDG) PET hypometabolism. We then performed a spectral decomposition of covariance between FDG-PET images to yield latent patterns of relative hypometabolism unbiased by diagnostic classification, which are referred to as 'eigenbrains'. These eigenbrains were subsequently linked to clinical and cognitive data and meta-analytic topics from a large external database of neuroimaging studies reflecting a wide range of mental functions. Finally, we performed a data-driven exploratory linear discriminant analysis to perform eigenbrain-based multiclass diagnostic predictions. Dysexecutive Alzheimer's disease and bvFTD patients were the youngest at symptom onset, followed by behavioural Alzheimer's disease, then amnestic Alzheimer's disease. Dysexecutive Alzheimer's disease patients had worse cognitive performance on nearly all cognitive domains compared with other groups, except verbal fluency which was equally impaired in dysexecutive Alzheimer's disease and bvFTD. Hypometabolism was observed in heteromodal cortices in dysexecutive Alzheimer's disease, temporo-parietal areas in amnestic Alzheimer's disease and frontotemporal areas in bvFTD and behavioural Alzheimer's disease. The unbiased spectral decomposition analysis revealed that relative hypometabolism in heteromodal cortices was associated with worse dysexecutive symptomatology and a lower likelihood of presenting with behaviour/personality problems, whereas relative hypometabolism in frontotemporal areas was associated with a higher likelihood of presenting with behaviour/personality problems but did not correlate with most cognitive measures. The linear discriminant analysis yielded an accuracy of 82.1% in predicting diagnostic category and did not misclassify any dysexecutive Alzheimer's disease patient for behavioural Alzheimer's disease and vice versa. Our results strongly suggest a double dissociation in that distinct macro-scale underpinnings underlie predominant dysexecutive versus personality/behavioural symptomatology in dementia syndromes. This has important implications for the implementation of criteria to diagnose and distinguish these diseases and supports the use of data-driven techniques to inform the classification of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Doença de Alzheimer/patologia , Fluordesoxiglucose F18 , Demência Frontotemporal/patologia , Função Executiva , Córtex Cerebral/patologia , Testes Neuropsicológicos
3.
Brain ; 147(3): 980-995, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804318

RESUMO

Given the prevalence of dementia and the development of pathology-specific disease-modifying therapies, high-value biomarker strategies to inform medical decision-making are critical. In vivo tau-PET is an ideal target as a biomarker for Alzheimer's disease diagnosis and treatment outcome measure. However, tau-PET is not currently widely accessible to patients compared to other neuroimaging methods. In this study, we present a convolutional neural network (CNN) model that imputes tau-PET images from more widely available cross-modality imaging inputs. Participants (n = 1192) with brain T1-weighted MRI (T1w), fluorodeoxyglucose (FDG)-PET, amyloid-PET and tau-PET were included. We found that a CNN model can impute tau-PET images with high accuracy, the highest being for the FDG-based model followed by amyloid-PET and T1w. In testing implications of artificial intelligence-imputed tau-PET, only the FDG-based model showed a significant improvement of performance in classifying tau positivity and diagnostic groups compared to the original input data, suggesting that application of the model could enhance the utility of the metabolic images. The interpretability experiment revealed that the FDG- and T1w-based models utilized the non-local input from physically remote regions of interest to estimate the tau-PET, but this was not the case for the Pittsburgh compound B-based model. This implies that the model can learn the distinct biological relationship between FDG-PET, T1w and tau-PET from the relationship between amyloid-PET and tau-PET. Our study suggests that extending neuroimaging's use with artificial intelligence to predict protein specific pathologies has great potential to inform emerging care models.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Neuroimagem , Tauopatias , Humanos , Proteínas Amiloidogênicas , Biomarcadores , Fluordesoxiglucose F18 , Neuroimagem/métodos , Tauopatias/diagnóstico por imagem
4.
Neuroimage ; 290: 120564, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442778

RESUMO

Posterior cortical atrophy (PCA) and dementia with Lewy bodies (DLB) show distinct atrophy and overlapping hypometabolism profiles, but it is unknown how disruptions in structural and functional connectivity compare between these disorders and whether breakdowns in connectivity relate to either atrophy or hypometabolism. Thirty amyloid-positive PCA patients, 24 amyloid-negative DLB patients and 30 amyloid-negative cognitively unimpaired (CU) healthy individuals were recruited at Mayo Clinic, Rochester, MN, and underwent a 3T head MRI, including structural MRI, resting state functional MRI (rsfMRI) and diffusion tensor imaging (DTI) sequences, as well as [18F] fluorodeoxyglucose (FDG) PET. We assessed functional connectivity within and between 12 brain networks using rsfMRI and the CONN functional connectivity toolbox and calculated regional DTI metrics using the Johns Hopkins atlas. Multivariate linear-regression models corrected for multiple comparisons and adjusted for age and sex compared DTI metrics and within-network and between-network functional connectivity across groups. Regional gray-matter volumes and FDG-PET standard uptake value ratios (SUVRs) were calculated and analyzed at the voxel-level using SPM12. We used univariate linear-regression models to investigate the relationship between connectivity measures, gray-matter volume, and FDG-PET SUVR. On DTI, PCA showed degeneration in occipito-parietal white matter, posterior thalamic radiations, splenium of the corpus collosum and sagittal stratum compared to DLB and CU, with greater degeneration in the temporal white matter and the fornix compared to CU. We observed no white-matter degeneration in DLB compared to CU. On rsfMRI, reduced within-network connectivity was present in dorsal and ventral default mode networks (DMN) and the dorsal-attention network in PCA compared to DLB and CU, with reduced within-network connectivity in the visual and sensorimotor networks compared to CU. DLB showed reduced connectivity in the cerebellar network compared to CU. Between-network analysis showed increased connectivity in both cerebellar-to-sensorimotor and cerebellar-to-dorsal attention network connectivity in PCA and DLB. PCA showed reduced anterior DMN-to-cerebellar and dorsal attention-to-sensorimotor connectivity, while DLB showed reduced posterior DMN-to-sensorimotor connectivity compared to CU. PCA showed reduced dorsal DMN-to-visual connectivity compared to DLB. The multimodal analysis revealed weak associations between functional connectivity and volume in PCA, and between functional connectivity and metabolism in DLB. These findings suggest that PCA and DLB have unique connectivity alterations, with PCA showing more widespread disruptions in both structural and functional connectivity; yet some overlap was observed with both disorders showing increased connectivity from the cerebellum.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Imagem de Tensor de Difusão , Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética , Atrofia , Doença de Alzheimer/metabolismo
5.
Acta Neuropathol ; 147(1): 73, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641715

RESUMO

The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Cerebelo , Degeneração Lobar Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Cerebelo/patologia , Expansão das Repetições de DNA/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Perfilação da Expressão Gênica , Transcriptoma
6.
Acta Neuropathol ; 147(1): 54, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472443

RESUMO

Rare and common GBA variants are risk factors for both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the degree to which GBA variants are associated with neuropathological features in Lewy body disease (LBD) is unknown. Herein, we assessed 943 LBD cases and examined associations of 15 different neuropathological outcomes with common and rare GBA variants. Neuropathological outcomes included LBD subtype, presence of a high likelihood of clinical DLB (per consensus guidelines), LB counts in five cortical regions, tyrosine hydroxylase immunoreactivity in the dorsolateral and ventromedial putamen, ventrolateral substantia nigra neuronal loss, Braak neurofibrillary tangle (NFT) stage, Thal amyloid phase, phospho-ubiquitin (pS65-Ub) level, TDP-43 pathology, and vascular disease. Sequencing of GBA exons revealed a total of 42 different variants (4 common [MAF > 0.5%], 38 rare [MAF < 0.5%]) in our series, and 165 cases (17.5%) had a copy of the minor allele for ≥ 1 variant. In analysis of common variants, p.L483P was associated with a lower Braak NFT stage (OR = 0.10, P < 0.001). In gene-burden analysis, presence of the minor allele for any GBA variant was associated with increased odds of a high likelihood of DLB (OR = 2.00, P < 0.001), a lower Braak NFT stage (OR = 0.48, P < 0.001), a lower Thal amyloid phase (OR = 0.55, P < 0.001), and a lower pS65-Ub level (ß: -0.37, P < 0.001). Subgroup analysis revealed that GBA variants were most common in LBD cases with a combination of transitional/diffuse LBD and Braak NFT stage 0-II or Thal amyloid phase 0-1, and correspondingly that the aforementioned associations of GBA gene-burden with a decreased Braak NFT stage and Thal amyloid phase were observed only in transitional or diffuse LBD cases. Our results indicate that in LBD, GBA variants occur most frequently in cases with greater LB pathology and low AD pathology, further informing disease-risk associations of GBA in PD, PD dementia, and DLB.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Doença por Corpos de Lewy/patologia , Doença de Parkinson/patologia , Doença de Alzheimer/patologia , Substância Negra/patologia , Emaranhados Neurofibrilares/patologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-38514176

RESUMO

BACKGROUND: Primary progressive aphasia (PPA) defines a group of neurodegenerative disorders characterised by language decline. Three PPA variants correlate with distinct underlying pathologies: semantic variant PPA (svPPA) with transactive response DNA-binding protein of 43 kD (TDP-43) proteinopathy, agrammatic variant PPA (agPPA) with tau deposition and logopenic variant PPA (lvPPA) with Alzheimer's disease (AD). Our objectives were to differentiate PPA variants using clinical and neuroimaging features, assess progression and evaluate structural MRI and a novel 18-F fluorodeoxyglucose positron emission tomography (FDG-PET) image decomposition machine learning algorithm for neuropathology prediction. METHODS: We analysed 82 autopsied patients diagnosed with PPA from 1998 to 2022. Clinical histories, language characteristics, neuropsychological results and brain imaging were reviewed. A machine learning framework using a k-nearest neighbours classifier assessed FDG-PET scans from 45 patients compared with a large reference database. RESULTS: PPA variant distribution: 35 lvPPA (80% AD), 28 agPPA (89% tauopathy) and 18 svPPA (72% frontotemporal lobar degeneration-TAR DNA-binding protein (FTLD-TDP)). Apraxia of speech was associated with 4R-tauopathy in agPPA, while pure agrammatic PPA without apraxia was linked to 3R-tauopathy. Longitudinal data revealed language dysfunction remained the predominant deficit for patients with lvPPA, agPPA evolved to corticobasal or progressive supranuclear palsy syndrome (64%) and svPPA progressed to behavioural variant frontotemporal dementia (44%). agPPA-4R-tauopathy exhibited limited pre-supplementary motor area atrophy, lvPPA-AD displayed temporal atrophy extending to the superior temporal sulcus and svPPA-FTLD-TDP had severe temporal pole atrophy. The FDG-PET-based machine learning algorithm accurately predicted clinical diagnoses and underlying pathologies. CONCLUSIONS: Distinguishing 3R-taupathy and 4R-tauopathy in agPPA may rely on apraxia of speech presence. Additional linguistic and clinical features can aid neuropathology prediction. Our data-driven brain metabolism decomposition approach effectively predicts underlying neuropathology.

8.
J Int Neuropsychol Soc ; 30(2): 138-151, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37385974

RESUMO

OBJECTIVE: The Stricker Learning Span (SLS) is a computer-adaptive digital word list memory test specifically designed for remote assessment and self-administration on a web-based multi-device platform (Mayo Test Drive). We aimed to establish criterion validity of the SLS by comparing its ability to differentiate biomarker-defined groups to the person-administered Rey's Auditory Verbal Learning Test (AVLT). METHOD: Participants (N = 353; mean age = 71, SD = 11; 93% cognitively unimpaired [CU]) completed the AVLT during an in-person visit, the SLS remotely (within 3 months) and had brain amyloid and tau PET scans available (within 3 years). Overlapping groups were formed for 1) those on the Alzheimer's disease (AD) continuum (amyloid PET positive, A+, n = 125) or not (A-, n = 228), and those with biological AD (amyloid and tau PET positive, A+T+, n = 55) vs no evidence of AD pathology (A-T-, n = 195). Analyses were repeated among CU participants only. RESULTS: The SLS and AVLT showed similar ability to differentiate biomarker-defined groups when comparing AUROCs (p's > .05). In logistic regression models, SLS contributed significantly to predicting biomarker group beyond age, education, and sex, including when limited to CU participants. Medium (A- vs A+) to large (A-T- vs A+T+) unadjusted effect sizes were observed for both SLS and AVLT. Learning and delay variables were similar in terms of ability to separate biomarker groups. CONCLUSIONS: Remotely administered SLS performed similarly to in-person-administered AVLT in its ability to separate biomarker-defined groups, providing evidence of criterion validity. Results suggest the SLS may be sensitive to detecting subtle objective cognitive decline in preclinical AD.


Assuntos
Doença de Alzheimer , Aprendizagem , Humanos , Idoso , Memória , Aprendizagem Verbal , Escolaridade , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores
9.
J Int Neuropsychol Soc ; 30(4): 389-401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38014536

RESUMO

OBJECTIVE: Normative neuropsychological data are essential for interpretation of test performance in the context of demographic factors. The Mayo Normative Studies (MNS) aim to provide updated normative data for neuropsychological measures administered in the Mayo Clinic Study of Aging (MCSA), a population-based study of aging that randomly samples residents of Olmsted County, Minnesota, from age- and sex-stratified groups. We examined demographic effects on neuropsychological measures and validated the regression-based norms in comparison to existing normative data developed in a similar sample. METHOD: The MNS includes cognitively unimpaired adults ≥30 years of age (n = 4,428) participating in the MCSA. Multivariable linear regressions were used to determine demographic effects on test performance. Regression-based normative formulas were developed by first converting raw scores to normalized scaled scores and then regressing on age, age2, sex, and education. Total and sex-stratified base rates of low scores (T < 40) were examined in an older adult validation sample and compared with Mayo's Older Americans Normative Studies (MOANS) norms. RESULTS: Independent linear regressions revealed variable patterns of linear and/or quadratic effects of age (r2 = 6-27% variance explained), sex (0-13%), and education (2-10%) across measures. MNS norms improved base rates of low performance in the older adult validation sample overall and in sex-specific patterns relative to MOANS. CONCLUSIONS: Our results demonstrate the need for updated norms that consider complex demographic associations on test performance and that specifically exclude participants with mild cognitive impairment from the normative sample.


Assuntos
Envelhecimento , Masculino , Feminino , Humanos , Idoso , Teste de Sequência Alfanumérica , Testes Neuropsicológicos , Testes de Linguagem , Fatores Etários , Envelhecimento/psicologia , Escolaridade , Valores de Referência
10.
J Int Neuropsychol Soc ; : 1-9, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525671

RESUMO

OBJECTIVE: To determine whether poorer performance on the Boston Naming Test (BNT) in individuals with transactive response DNA-binding protein 43 pathology (TDP-43+) is due to greater loss of word knowledge compared to retrieval-based deficits. METHODS: Retrospective clinical-pathologic study of 282 participants with Alzheimer's disease neuropathologic changes (ADNC) and known TDP-43 status. We evaluated item-level performance on the 60-item BNT for first and last available assessment. We fit cross-sectional negative binomial count models that assessed total number of incorrect items, number correct of responses with phonemic cue (reflecting retrieval difficulties), and number of "I don't know" (IDK) responses (suggestive of loss of word knowledge) at both assessments. Models included TDP-43 status and adjusted for sex, age, education, years from test to death, and ADNC severity. Models that evaluated the last assessment adjusted for number of prior BNT exposures. RESULTS: 43% were TDP-43+. The TDP-43+ group had worse performance on BNT total score at first (p = .01) and last assessments (p = .01). At first assessment, TDP-43+ individuals had an estimated 29% (CI: 7%-56%) higher mean number of incorrect items after adjusting for covariates, and a 51% (CI: 15%-98%) higher number of IDK responses compared to TDP-43-. At last assessment, compared to TDP-43-, the TDP-43+ group on average missed 31% (CI: 6%-62%; p = .01) more items and had 33% more IDK responses (CI: 1% fewer to 78% more; p = .06). CONCLUSIONS: An important component of poorer performance on the BNT in participants who are TDP-43+ is having loss of word knowledge versus retrieval difficulties.

11.
Brain ; 146(11): 4508-4519, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37279785

RESUMO

Blood-based biomarkers offer strong potential to revolutionize diagnosis, trial enrolment and treatment monitoring in Alzheimer's disease (AD). However, further advances are needed before these biomarkers can achieve wider deployment beyond selective research studies and specialty memory clinics, including the development of frameworks for optimal interpretation of biomarker profiles. We hypothesized that integrating Alzheimer's disease genetic risk score (AD-GRS) data would enhance the diagnostic value of plasma AD biomarkers by better capturing extant disease heterogeneity. Analysing 962 individuals from a population-based sample, we observed that an AD-GRS was independently associated with amyloid PET levels (an early marker of AD pathophysiology) over and above APOE ε4 or plasma p-tau181, amyloid-ß42/40, glial fibrillary acidic protein or neurofilament light chain. Among individuals with a high or moderately high plasma p-tau181, integrating AD-GRS data significantly improved classification accuracy of amyloid PET positivity, including the finding that the combination of a high AD-GRS and high plasma p-tau181 outperformed p-tau181 alone in classifying amyloid PET positivity (88% versus 68%; P = 0.001). A machine learning approach incorporating plasma biomarkers, demographics and the AD-GRS was highly accurate in predicting amyloid PET levels (90% training set; 89% test set) and Shapley value analyses (an explainer method based in cooperative game theory) indicated that the AD-GRS and plasma biomarkers had differential importance in explaining amyloid deposition across individuals. Polygenic risk for AD dementia appears to account for a unique portion of disease heterogeneity, which could non-invasively enhance the interpretation of blood-based AD biomarker profiles in the population.


Assuntos
Doença de Alzheimer , Amiloidose , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Biomarcadores , Proteínas Amiloidogênicas/metabolismo , Fatores de Risco
12.
Brain ; 146(5): 2029-2044, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36789483

RESUMO

Staging the severity of Alzheimer's disease pathology using biomarkers is useful for therapeutic trials and clinical prognosis. Disease staging with amyloid and tau PET has face validity; however, this would be more practical with plasma biomarkers. Our objectives were, first, to examine approaches for staging amyloid and tau PET and, second, to examine prediction of amyloid and tau PET stages using plasma biomarkers. Participants (n = 1136) were enrolled in either the Mayo Clinic Study of Aging or the Alzheimer's Disease Research Center; had a concurrent amyloid PET, tau PET and blood draw; and met clinical criteria for cognitively unimpaired (n = 864), mild cognitive impairment (n = 148) or Alzheimer's clinical syndrome with dementia (n = 124). The latter two groups were combined into a cognitively impaired group (n = 272). We used multinomial regression models to estimate discrimination [concordance (C) statistics] among three amyloid PET stages (low, intermediate, high), four tau PET stages (Braak 0, 1-2, 3-4, 5-6) and a combined amyloid and tau PET stage (none/low versus intermediate/high severity) using plasma biomarkers as predictors separately within unimpaired and impaired individuals. Plasma analytes, p-tau181, Aß1-42 and Aß1-40 (analysed as the Aß42/Aß40 ratio), glial fibrillary acidic protein and neurofilament light chain were measured on the HD-X Simoa Quanterix platform. Plasma p-tau217 was also measured in a subset (n = 355) of cognitively unimpaired participants using the Lilly Meso Scale Discovery assay. Models with all Quanterix plasma analytes along with risk factors (age, sex and APOE) most often provided the best discrimination among amyloid PET stages (C = 0.78-0.82). Models with p-tau181 provided similar discrimination of tau PET stages to models with all four plasma analytes (C = 0.72-0.85 versus C = 0.73-0.86). Discriminating a PET proxy of intermediate/high from none/low Alzheimer's disease neuropathological change with all four Quanterix plasma analytes was excellent but not better than p-tau181 only (C = 0.88 versus 0.87 for unimpaired and C = 0.91 versus 0.90 for impaired). Lilly p-tau217 outperformed the Quanterix p-tau181 assay for discriminating high versus intermediate amyloid (C = 0.85 versus 0.74) but did not improve over a model with all Quanterix plasma analytes and risk factors (C = 0.85 versus 0.83). Plasma analytes along with risk factors can discriminate between amyloid and tau PET stages and between a PET surrogate for intermediate/high versus none/low neuropathological change with accuracy in the acceptable to excellent range. Combinations of plasma analytes are better than single analytes for many staging predictions with the exception that Quanterix p-tau181 alone usually performed equivalently to combinations of Quanterix analytes for tau PET discrimination.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Proteínas Amiloidogênicas , Biomarcadores , Envelhecimento , Proteínas tau , Peptídeos beta-Amiloides
13.
Neurocase ; 30(1): 1-7, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38758704

RESUMO

A research participant was monitored over nearly two decades at Mayo Clinic, undergoing annual neurologic assessments, neuropsychological tests, and multimodal imaging. Initially, he was cognitively normal but developed symptoms consistent with Posterior Cortical Atrophy (PCA) during the study. Early tests indicated mild, yet normal-range declines in language and visuospatial skills. FDG-PET scans revealed increased metabolism in posterior brain regions long before symptoms appeared. Advanced analysis using a novel in-house machine-learning tool predicted concurrent Alzheimer's disease and dementia with Lewy bodies. Autopsy confirmed a mixed neurodegenerative condition with significant Alzheimer's pathology and dense neocortical Lewy bodies. This case underscores the value of longitudinal imaging in predicting complex neurodegenerative diseases, offering vital insights into the early neurocognitive changes associated with PCA and dementia with Lewy bodies.


Assuntos
Atrofia , Doença por Corpos de Lewy , Tomografia por Emissão de Pósitrons , Humanos , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/diagnóstico por imagem , Masculino , Atrofia/patologia , Córtex Cerebral/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Idoso , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Sintomas Prodrômicos , Testes Neuropsicológicos
14.
J Biomed Inform ; 152: 104623, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38458578

RESUMO

INTRODUCTION: Patients' functional status assesses their independence in performing activities of daily living, including basic ADLs (bADL), and more complex instrumental activities (iADL). Existing studies have discovered that patients' functional status is a strong predictor of health outcomes, particularly in older adults. Depite their usefulness, much of the functional status information is stored in electronic health records (EHRs) in either semi-structured or free text formats. This indicates the pressing need to leverage computational approaches such as natural language processing (NLP) to accelerate the curation of functional status information. In this study, we introduced FedFSA, a hybrid and federated NLP framework designed to extract functional status information from EHRs across multiple healthcare institutions. METHODS: FedFSA consists of four major components: 1) individual sites (clients) with their private local data, 2) a rule-based information extraction (IE) framework for ADL extraction, 3) a BERT model for functional status impairment classification, and 4) a concept normalizer. The framework was implemented using the OHNLP Backbone for rule-based IE and open-source Flower and PyTorch library for federated BERT components. For gold standard data generation, we carried out corpus annotation to identify functional status-related expressions based on ICF definitions. Four healthcare institutions were included in the study. To assess FedFSA, we evaluated the performance of category- and institution-specific ADL extraction across different experimental designs. RESULTS: ADL extraction performance ranges from an F1-score of 0.907 to 0.986 for bADL and 0.825 to 0.951 for iADL across the four healthcare sites. The performance for ADL extraction with impairment ranges from an F1-score of 0.722 to 0.954 for bADL and 0.674 to 0.813 for iADL across four healthcare sites. For category-specific ADL extraction, laundry and transferring yielded relatively high performance, while dressing, medication, bathing, and continence achieved moderate-high performance. Conversely, food preparation and toileting showed low performance. CONCLUSION: NLP performance varied across ADL categories and healthcare sites. Federated learning using a FedFSA framework performed higher than non-federated learning for impaired ADL extraction at all healthcare sites. Our study demonstrated the potential of the federated learning framework in functional status extraction and impairment classification in EHRs, exemplifying the importance of a large-scale, multi-institutional collaborative development effort.


Assuntos
Atividades Cotidianas , Estado Funcional , Humanos , Idoso , Aprendizagem , Armazenamento e Recuperação da Informação , Processamento de Linguagem Natural
15.
Cereb Cortex ; 33(11): 7026-7043, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36721911

RESUMO

Dysexecutive Alzheimer's disease (dAD) manifests as a progressive dysexecutive syndrome without prominent behavioral features, and previous studies suggest clinico-radiological heterogeneity within this syndrome. We uncovered this heterogeneity using unsupervised machine learning in 52 dAD patients with multimodal imaging and cognitive data. A spectral decomposition of covariance between FDG-PET images yielded six latent factors ("eigenbrains") accounting for 48% of variance in patterns of hypometabolism. These eigenbrains differentially related to age at onset, clinical severity, and cognitive performance. A hierarchical clustering on the eigenvalues of these eigenbrains yielded four dAD subtypes, i.e. "left-dominant," "right-dominant," "bi-parietal-dominant," and "heteromodal-diffuse." Patterns of FDG-PET hypometabolism overlapped with those of tau-PET distribution and MRI neurodegeneration for each subtype, whereas patterns of amyloid deposition were similar across subtypes. Subtypes differed in age at onset and clinical severity where the heteromodal-diffuse exhibited a worse clinical picture, and the bi-parietal had a milder clinical presentation. We propose a conceptual framework of executive components based on the clinico-radiological associations observed in dAD. We demonstrate that patients with dAD, despite sharing core clinical features, are diagnosed with variability in their clinical and neuroimaging profiles. Our findings support the use of data-driven approaches to delineate brain-behavior relationships relevant to clinical practice and disease physiology.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Fluordesoxiglucose F18 , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Neuroimagem , Imageamento por Ressonância Magnética
16.
Int Psychogeriatr ; : 1-49, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329083

RESUMO

OBJECTIVE: We aim to analyze the efficacy and safety of TMS on cognition in mild cognitive impairment (MCI), Alzheimer's disease (AD), AD-related dementias, and nondementia conditions with comorbid cognitive impairment. DESIGN: Systematic review, Meta-Analysis. SETTING: We searched MEDLINE, Embase, Cochrane database, APA PsycINFO, Web of Science, and Scopus from January 1, 2000, to February 9, 2023. PARTICIPANTS AND INTERVENTIONS: RCTs, open-label, and case series studies reporting cognitive outcomes following TMS intervention were included. MEASUREMENT: Cognitive and safety outcomes were measured. Cochrane Risk of Bias for RCTs and MINORS (Methodological Index for Non-Randomized Studies) criteria were used to evaluate study quality. This study was registered with PROSPERO (CRD42022326423). RESULTS: The systematic review included 143 studies (n = 5,800 participants) worldwide, encompassing 94 RCTs, 43 open-label prospective, 3 open-label retrospective, and 3 case series. The meta-analysis included 25 RCTs in MCI and AD. Collectively, these studies provide evidence of improved global and specific cognitive measures with TMS across diagnostic groups. Only 2 studies (among 143) reported 4 adverse events of seizures: 3 were deemed TMS unrelated and another resolved with coil repositioning. Meta-analysis showed large effect sizes on global cognition (Mini-Mental State Examination (SMD = 0.80 [0.26, 1.33], p = 0.003), Montreal Cognitive Assessment (SMD = 0.85 [0.26, 1.44], p = 0.005), Alzheimer's Disease Assessment Scale-Cognitive Subscale (SMD = -0.96 [-1.32, -0.60], p < 0.001)) in MCI and AD, although with significant heterogeneity. CONCLUSION: The reviewed studies provide favorable evidence of improved cognition with TMS across all groups with cognitive impairment. TMS was safe and well tolerated with infrequent serious adverse events.

17.
Alzheimers Dement ; 20(2): 1225-1238, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37963289

RESUMO

INTRODUCTION: The timing of plasma biomarker changes is not well understood. The goal of this study was to evaluate the temporal co-evolution of plasma and positron emission tomography (PET) Alzheimer's disease (AD) biomarkers. METHODS: We included 1408 Mayo Clinic Study of Aging and Alzheimer's Disease Research Center participants. An accelerated failure time (AFT) model was fit with amyloid beta (Aß) PET, tau PET, plasma p-tau217, p-tau181, and glial fibrillary acidic protein (GFAP) as endpoints. RESULTS: Individual timing of plasma p-tau progression was strongly associated with Aß PET and GFAP progression. In the population, GFAP became abnormal first, then Aß PET, plasma p-tau, and tau PET temporal meta-regions of interest when applying cut points based on young, cognitively unimpaired participants. DISCUSSION: Plasma p-tau is a stronger indicator of a temporally linked response to elevated brain Aß than of tau pathology. While Aß deposition and a rise in GFAP are upstream events associated with tau phosphorylation, the temporal link between p-tau and Aß PET was the strongest. HIGHLIGHTS: Plasma p-tau progression was more strongly associated with Aß than tau PET. Progression on plasma p-tau was associated with Aß PET and GFAP progression. P-tau181 and p-tau217 become abnormal after Aß PET and before tau PET. GFAP became abnormal first, before plasma p-tau and Aß PET.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides , Doença de Alzheimer/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Envelhecimento , Encéfalo/diagnóstico por imagem , Proteínas tau , Biomarcadores
18.
Alzheimers Dement ; 20(2): 1201-1213, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932910

RESUMO

INTRODUCTION: Cost-effective screening tools for vascular contributions to cognitive impairment and dementia (VCID) has significant implications. We evaluated non-imaging indicators of VCID using magnetic resonance imaging (MRI)-measured white matter (WM) damage and hypothesized that these indicators differ based on age. METHODS: In 745 participants from the Mayo Clinic Study of Aging (≥50 years of age) with serial WM assessments from diffusion MRI and fluid-attenuated inversion recovery (FLAIR)-MRI, we examined associations between baseline non-imaging indicators (demographics, vascular risk factors [VRFs], gait, behavioral, plasma glial fibrillary acidic protein [GFAP], and plasma neurofilament light chain [NfL]) and WM damage across three age tertiles. RESULTS: VRFs and gait were associated with diffusion changes even in low age strata. All measures (VRFs, gait, behavioral, plasma GFAP, plasma NfL) were associated with white matter hyperintensities (WMHs) but mainly in intermediate and high age strata. DISCUSSION: Non-imaging indicators of VCID were related to WM damage and may aid in screening participants and assessing outcomes for VCID. HIGHLIGHTS: Non-imaging indicators of VCID can aid in prediction of MRI-measured WM damage but their importance differed by age. Vascular risk and gait measures were associated with early VCID changes measured using diffusion MRI. Plasma markers explained variability in WMH across age strata. Most non-imaging measures explained variability in WMH and vascular WM scores in intermediate and older age groups. The framework developed here can be used to evaluate new non-imaging VCID indicators proposed in the future.


Assuntos
Disfunção Cognitiva , Demência Vascular , Substância Branca , Humanos , Idoso , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Disfunção Cognitiva/patologia , Envelhecimento/patologia , Demência Vascular/patologia
19.
Alzheimers Dement ; 20(3): 1923-1932, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159060

RESUMO

INTRODUCTION: The implications of positive tau positron emission tomography (T) with negative beta amyloid positron emission tomography (A) are not well understood. We investigated cognitive performance in participants who were T+ but A-. METHODS: We evaluated 98 participants from the Mayo Clinic who were T+ and A-. Participants were matched 2:1 to A- and T- cognitively unimpaired (CU) controls. Cognitive test scores were compared between different groups. RESULTS: The A-T+ group demonstrated lower performance than the A-T- group on the Mini-Mental Status Exam (MMSE) (p < 0.001), Wechsler Memory Scale-Revised Logical Memory I (p < 0.001) and Logical Memory II (p < 0.001), Auditory Verbal Learning Test (AVLT) delayed recall (p = 0.004), category fluency (animals p = 0.005; vegetables p = 0.021), Trail Making Test A and B (p < 0.001), and others. There were no significant differences in demographic features or apolipoprotein E (APOE) e4 genotype between CU A-T+ and CI A-T+. DISCUSSION: A-T+ participants show an association with lower cognitive performance.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Encéfalo/metabolismo , Proteínas tau/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/psicologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia
20.
Alzheimers Dement ; 20(3): 2143-2154, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265198

RESUMO

BACKGROUND: We compared the ability of several plasma biomarkers versus amyloid positron emission tomography (PET) to predict rates of memory decline among cognitively unimpaired individuals. METHODS: We studied 645 Mayo Clinic Study of Aging participants. Predictor variables were age, sex, education, apolipoprotein E (APOE) ε4 genotype, amyloid PET, and plasma amyloid beta (Aß)42/40, phosphorylated tau (p-tau)181, neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and p-tau217. The outcome was a change in a memory composite measure. RESULTS: All plasma biomarkers, except NfL, were associated with mean memory decline in models with individual biomarkers. However, amyloid PET and plasma p-tau217, along with age, were key variables independently associated with mean memory decline in models combining all predictors. Confidence intervals were narrow for estimates of population mean prediction, but person-level prediction intervals were wide. DISCUSSION: Plasma p-tau217 and amyloid PET provide useful information about predicting rates of future cognitive decline in cognitively unimpaired individuals at the population mean level, but not at the individual person level.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/complicações , Biomarcadores , Transtornos da Memória/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA