Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 548(7668): 443-446, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28836593

RESUMO

Methane (CH4) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions) and top-down approaches (measuring atmospheric mole fractions and isotopes) for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane (14CH4) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than today, our results indicate that current estimates of today's natural geological methane emissions (about 52 teragrams per year) are too high and, by extension, that current estimates of anthropogenic fossil methane emissions are too low. Our results also improve on and confirm earlier findings that the rapid increase of about 50 per cent in mole fraction of atmospheric methane at the Younger Dryas-Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates, permafrost and methane trapped under ice) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas-Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.


Assuntos
Atmosfera/química , Aquecimento Global/história , Metano/análise , Metano/história , Carbono/análise , Carbono/química , Combustíveis Fósseis/análise , História Antiga , Gelo/análise , Metano/química , Datação Radiométrica , Áreas Alagadas
2.
Nature ; 516(7530): 234-7, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25503236

RESUMO

Nitrous oxide (N2O) is an important greenhouse gas and ozone-depleting substance that has anthropogenic as well as natural marine and terrestrial sources. The tropospheric N2O concentrations have varied substantially in the past in concert with changing climate on glacial-interglacial and millennial timescales. It is not well understood, however, how N2O emissions from marine and terrestrial sources change in response to varying environmental conditions. The distinct isotopic compositions of marine and terrestrial N2O sources can help disentangle the relative changes in marine and terrestrial N2O emissions during past climate variations. Here we present N2O concentration and isotopic data for the last deglaciation, from 16,000 to 10,000 years before present, retrieved from air bubbles trapped in polar ice at Taylor Glacier, Antarctica. With the help of our data and a box model of the N2O cycle, we find a 30 per cent increase in total N2O emissions from the late glacial to the interglacial, with terrestrial and marine emissions contributing equally to the overall increase and generally evolving in parallel over the last deglaciation, even though there is no a priori connection between the drivers of the two sources. However, we find that terrestrial emissions dominated on centennial timescales, consistent with a state-of-the-art dynamic global vegetation and land surface process model that suggests that during the last deglaciation emission changes were strongly influenced by temperature and precipitation patterns over land surfaces. The results improve our understanding of the drivers of natural N2O emissions and are consistent with the idea that natural N2O emissions will probably increase in response to anthropogenic warming.


Assuntos
Organismos Aquáticos/metabolismo , Atmosfera/química , Camada de Gelo , Óxido Nitroso/metabolismo , Regiões Antárticas , Aquecimento Global , História Antiga , Isótopos de Nitrogênio/análise , Óxido Nitroso/análise , Óxido Nitroso/história , Isótopos de Oxigênio/análise , Chuva , Temperatura , Fatores de Tempo
3.
Proc Natl Acad Sci U S A ; 113(13): 3465-70, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976561

RESUMO

An understanding of the mechanisms that control CO2 change during glacial-interglacial cycles remains elusive. Here we help to constrain changing sources with a high-precision, high-resolution deglacial record of the stable isotopic composition of carbon in CO2(δ(13)C-CO2) in air extracted from ice samples from Taylor Glacier, Antarctica. During the initial rise in atmospheric CO2 from 17.6 to 15.5 ka, these data demarcate a decrease in δ(13)C-CO2, likely due to a weakened oceanic biological pump. From 15.5 to 11.5 ka, the continued atmospheric CO2 rise of 40 ppm is associated with small changes in δ(13)C-CO2, consistent with a nearly equal contribution from a further weakening of the biological pump and rising ocean temperature. These two trends, related to marine sources, are punctuated at 16.3 and 12.9 ka with abrupt, century-scale perturbations in δ(13)C-CO2 that suggest rapid oxidation of organic land carbon or enhanced air-sea gas exchange in the Southern Ocean. Additional century-scale increases in atmospheric CO2 coincident with increases in atmospheric CH4 and Northern Hemisphere temperature at the onset of the Bølling (14.6-14.3 ka) and Holocene (11.6-11.4 ka) intervals are associated with small changes in δ(13)C-CO2, suggesting a combination of sources that included rising surface ocean temperature.

4.
Proc Natl Acad Sci U S A ; 111(19): 6876-81, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24753606

RESUMO

We present successful (81)Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The (81)Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) (85)Kr and (39)Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the (81)Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA (81)Kr analysis requires a 40-80-kg ice sample; as sample requirements continue to decrease, (81)Kr dating of ice cores is a future possibility.


Assuntos
Mudança Climática , Camada de Gelo/química , Gelo/análise , Radioisótopos de Criptônio , Datação Radiométrica/métodos , Regiões Antárticas , Gases/análise , Datação Radiométrica/normas , Reprodutibilidade dos Testes
5.
Proc Natl Acad Sci U S A ; 110(6): 2029-34, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23341630

RESUMO

Nitrogen trifluoride (NF(3)) has potential to make a growing contribution to the Earth's radiative budget; however, our understanding of its atmospheric burden and emission rates has been limited. Based on a revision of our previous calibration and using an expanded set of atmospheric measurements together with an atmospheric model and inverse method, we estimate that the global emissions of NF(3) in 2011 were 1.18 ± 0.21 Gg⋅y(-1), or ∼20 Tg CO(2)-eq⋅y(-1) (carbon dioxide equivalent emissions based on a 100-y global warming potential of 16,600 for NF(3)). The 2011 global mean tropospheric dry air mole fraction was 0.86 ± 0.04 parts per trillion, resulting from an average emissions growth rate of 0.09 Gg⋅y(-2) over the prior decade. In terms of CO(2) equivalents, current NF(3) emissions represent between 17% and 36% of the emissions of other long-lived fluorinated compounds from electronics manufacture. We also estimate that the emissions benefit of using NF(3) over hexafluoroethane (C(2)F(6)) in electronics manufacture is significant-emissions of between 53 and 220 Tg CO(2)-eq⋅y(-1) were avoided during 2011. Despite these savings, total NF(3) emissions, currently ∼10% of production, are still significantly larger than expected assuming global implementation of ideal industrial practices. As such, there is a continuing need for improvements in NF(3) emissions reduction strategies to keep pace with its increasing use and to slow its rising contribution to anthropogenic climate forcing.

6.
Nat Commun ; 13(1): 5443, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114188

RESUMO

Here we use high-precision carbon isotope data (δ13C-CO2) to show atmospheric CO2 during Marine Isotope Stage 4 (MIS 4, ~70.5-59 ka) was controlled by a succession of millennial-scale processes. Enriched δ13C-CO2 during peak glaciation suggests increased ocean carbon storage. Variations in δ13C-CO2 in early MIS 4 suggest multiple processes were active during CO2 drawdown, potentially including decreased land carbon and decreased Southern Ocean air-sea gas exchange superposed on increased ocean carbon storage. CO2 remained low during MIS 4 while δ13C-CO2 fluctuations suggest changes in Southern Ocean and North Atlantic air-sea gas exchange. A 7 ppm increase in CO2 at the onset of Dansgaard-Oeschger event 19 (72.1 ka) and 27 ppm increase in CO2 during late MIS 4 (Heinrich Stadial 6, ~63.5-60 ka) involved additions of isotopically light carbon to the atmosphere. The terrestrial biosphere and Southern Ocean air-sea gas exchange are possible sources, with the latter event also involving decreased ocean carbon storage.


Assuntos
Dióxido de Carbono , Camada de Gelo , Carbono , Ciclo do Carbono , Isótopos de Carbono , Água do Mar
7.
Science ; 324(5926): 506-8, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19390044

RESUMO

The cause of a large increase of atmospheric methane concentration during the Younger Dryas-Preboreal abrupt climatic transition (approximately 11,600 years ago) has been the subject of much debate. The carbon-14 (14C) content of methane (14CH4) should distinguish between wetland and clathrate contributions to this increase. We present measurements of 14CH4 in glacial ice, targeting this transition, performed by using ice samples obtained from an ablation site in west Greenland. Measured 14CH4 values were higher than predicted under any scenario. Sample 14CH4 appears to be elevated by direct cosmogenic 14C production in ice. 14C of CO was measured to better understand this process and correct the sample 14CH4. Corrected results suggest that wetland sources were likely responsible for the majority of the Younger Dryas-Preboreal CH4 rise.

8.
Science ; 313(5790): 1109-12, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16931759

RESUMO

We report atmospheric methane carbon isotope ratios (delta13CH4) from the Western Greenland ice margin spanning the Younger Dryas-to-Preboreal (YD-PB) transition. Over the recorded approximately 800 years, delta13CH4 was around -46 per mil (per thousand); that is, approximately 1 per thousand higher than in the modern atmosphere and approximately 5.5 per thousand higher than would be expected from budgets without 13C-rich anthropogenic emissions. This requires higher natural 13C-rich emissions or stronger sink fractionation than conventionally assumed. Constant delta13CH4 during the rise in methane concentration at the YD-PB transition is consistent with additional emissions from tropical wetlands, or aerobic plant CH4 production, or with a multisource scenario. A marine clathrate source is unlikely.


Assuntos
Atmosfera , Clima , Ecossistema , Gelo/análise , Metano/análise , Animais , Bactérias/metabolismo , Isótopos de Carbono/análise , Meio Ambiente , Groenlândia , Metano/metabolismo , Plantas/metabolismo , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA