Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-33871680

RESUMO

One hundred years ago in 1921, Sir Boris Uvarov recognized that two locust species are one species but appearing in two different phases, a solitarious and a gregarious phase. As locust swarms are still a big problem affecting millions of people, basic research has tried to understand the causes for the transition between phases. This phenomenon of phase polymorphism, now called polyphenism, is a very complex multifactorial process and this short review will draw attention to this important aspect of insect research.


Assuntos
Comportamento Animal , Pesquisa Biomédica/história , Gafanhotos/fisiologia , Neurofisiologia , Animais , Aminas Biogênicas/metabolismo , Evolução Biológica , Feminino , Genótipo , Gafanhotos/genética , Gafanhotos/metabolismo , História do Século XX , História do Século XXI , Masculino , Neurofisiologia/história , Fenótipo , Feromônios/metabolismo , Densidade Demográfica , Limiar Sensorial , Comportamento Social , Especificidade da Espécie
2.
J Neurophysiol ; 122(6): 2388-2413, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31619113

RESUMO

Neuromodulatory neurons located in the brain can influence activity in locomotor networks residing in the spinal cord or ventral nerve cords of invertebrates. How inputs to and outputs of neuromodulatory descending neurons affect walking activity is largely unknown. With the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and immunohistochemistry, we show that a population of dorsal unpaired median (DUM) neurons descending from the gnathal ganglion to thoracic ganglia of the stick insect Carausius morosus contains the neuromodulatory amine octopamine. These neurons receive excitatory input coupled to the legs' stance phases during treadmill walking. Inputs did not result from connections with thoracic central pattern-generating networks, but, instead, most are derived from leg load sensors. In excitatory and inhibitory retractor coxae motor neurons, spike activity in the descending DUM (desDUM) neurons increased depolarizing reflexlike responses to stimulation of leg load sensors. In these motor neurons, descending octopaminergic neurons apparently functioned as components of a positive feedback network mainly driven by load-detecting sense organs. Reflexlike responses in excitatory extensor tibiae motor neurons evoked by stimulations of a femur-tibia movement sensor either are increased or decreased or were not affected by the activity of the descending neurons, indicating different functions of desDUM neurons. The increase in motor neuron activity is often accompanied by a reflex reversal, which is characteristic for actively moving animals. Our findings indicate that some descending octopaminergic neurons can facilitate motor activity during walking and support a sensory-motor state necessary for active leg movements.NEW & NOTEWORTHY We investigated the role of descending octopaminergic neurons in the gnathal ganglion of stick insects. The neurons become active during walking, mainly triggered by input from load sensors in the legs rather than pattern-generating networks. This report provides novel evidence that octopamine released by descending neurons on stimulation of leg sense organs contributes to the modulation of leg sensory-evoked activity in a leg motor control system.


Assuntos
Gânglios dos Invertebrados/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Neurônios Eferentes/fisiologia , Octopamina/metabolismo , Caminhada/fisiologia , Animais , Comportamento Animal/fisiologia , Insetos
3.
Artigo em Inglês | MEDLINE | ID: mdl-28918475

RESUMO

A detailed account is given by the octopaminergic innervation of the antennal heart in Schistocerca gregaria using various immunohistochemical methods. Anterograde axonal filling illustrates the unilateral innervation on the medial ventral surface of the pumping muscle of the antennal heart via the paired corpora cardiaca nerve III. In addition, antibody staining revealed that ascending axons of this nerve terminate at the ampullae of the antennal heart forming synaptoid structures and extensive neurohaemal release sites. Due to the innervation by two dorsal unpaired median neurons, the presence of the biogenic amines octopamine and tyramine could be visualized by immunocytochemistry in an insect antennal heart for the first time. The data suggest that tyramine acts as a precursor and not purely as an independent transmitter. While the octopaminergic fibers innervating the pumping muscle of the antennal heart indicate a cardioregulatory role, we conclude that octopamine released from the neurohaemal area is pumped into the antennae and an involvement in the modulation of the antennal sensory sensitivity is discussed.


Assuntos
Antenas de Artrópodes/inervação , Antenas de Artrópodes/metabolismo , Gafanhotos/citologia , Gafanhotos/metabolismo , Octopamina/metabolismo , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Sistema Cardiovascular/anatomia & histologia , Sistema Cardiovascular/metabolismo , Feminino , Proteínas de Insetos/metabolismo , Masculino , Músculos/inervação , Músculos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Estreptavidina/metabolismo , Sinapsinas/metabolismo , Tiramina/metabolismo
4.
BMC Evol Biol ; 17(1): 3, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049417

RESUMO

BACKGROUND: Due to their phylogenetic position as one of the closest arthropod relatives, studies of the organisation of the nervous system in onychophorans play a key role for understanding the evolution of body segmentation in arthropods. Previous studies revealed that, in contrast to the arthropods, segmentally repeated ganglia are not present within the onychophoran ventral nerve cords, suggesting that segmentation is either reduced or might be incomplete in the onychophoran ventral nervous system. RESULTS: To assess segmental versus non-segmental features in the ventral nervous system of onychophorans, we screened the nerve cords for various markers, including synapsin, serotonin, gamma-aminobutyric acid, RFamide, dopamine, tyramine and octopamine. In addition, we performed retrograde fills of serially repeated commissures and leg nerves to localise the position of neuronal somata supplying those. Our data revealed a mixture of segmental and non-segmental elements within the onychophoran nervous system. CONCLUSIONS: We suggest that the segmental ganglia of arthropods evolved by a gradual condensation of subsets of neurons either in the arthropod or the arthropod-tardigrade lineage. These findings are in line with the hypothesis of gradual evolution of segmentation in panarthropods and thus contradict a loss of ancestral segmentation within the onychophoran lineage.


Assuntos
Artrópodes/anatomia & histologia , Gânglios dos Invertebrados , Animais , Artrópodes/classificação , Artrópodes/metabolismo , Evolução Biológica , Biomarcadores/metabolismo , Sistema Nervoso/anatomia & histologia , Neurônios , Neuropeptídeos , Filogenia , Serotonina/metabolismo
5.
BMC Evol Biol ; 13: 230, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24152256

RESUMO

BACKGROUND: Although molecular analyses have contributed to a better resolution of the animal tree of life, the phylogenetic position of tardigrades (water bears) is still controversial, as they have been united alternatively with nematodes, arthropods, onychophorans (velvet worms), or onychophorans plus arthropods. Depending on the hypothesis favoured, segmental ganglia in tardigrades and arthropods might either have evolved independently, or they might well be homologous, suggesting that they were either lost in onychophorans or are a synapomorphy of tardigrades and arthropods. To evaluate these alternatives, we analysed the organisation of the nervous system in three tardigrade species using antisera directed against tyrosinated and acetylated tubulin, the amine transmitter serotonin, and the invertebrate neuropeptides FMRFamide, allatostatin and perisulfakinin. In addition, we performed retrograde staining of nerves in the onychophoran Euperipatoides rowelli in order to compare the serial locations of motor neurons within the nervous system relative to the appendages they serve in arthropods, tardigrades and onychophorans. RESULTS: Contrary to a previous report from a Macrobiotus species, our immunocytochemical and electron microscopic data revealed contralateral fibres and bundles of neurites in each trunk ganglion of three tardigrade species, including Macrobiotus cf. harmsworthi, Paramacrobiotus richtersi and Hypsibius dujardini. Moreover, we identified additional, extra-ganglionic commissures in the interpedal regions bridging the paired longitudinal connectives. Within the ganglia we found serially repeated sets of serotonin- and RFamid-like immunoreactive neurons. Furthermore, our data show that the trunk ganglia of tardigrades, which include the somata of motor neurons, are shifted anteriorly with respect to each corresponding leg pair, whereas no such shift is evident in the arrangement of motor neurons in the onychophoran nerve cords. CONCLUSIONS: Taken together, these data reveal three major correspondences between the segmental ganglia of tardigrades and arthropods, including (i) contralateral projections and commissures in each ganglion, (ii) segmentally repeated sets of immunoreactive neurons, and (iii) an anteriorly shifted (parasegmental) position of ganglia. These correspondences support the homology of segmental ganglia in tardigrades and arthropods, suggesting that these structures were either lost in Onychophora or, alternatively, evolved in the tardigrade/arthropod lineage.


Assuntos
Evolução Biológica , Invertebrados/anatomia & histologia , Invertebrados/genética , Animais , Artrópodes/classificação , Artrópodes/genética , Gânglios/citologia , Invertebrados/classificação , Invertebrados/fisiologia , Neurônios Motores/citologia , Sistema Nervoso/anatomia & histologia , Filogenia
6.
Physiology (Bethesda) ; 26(4): 293-303, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21841077

RESUMO

Skeletal muscle innervation differs between vertebrates and insects. Insect muscle fibers exhibit graded electrical potentials and are innervated by excitatory, inhibitory, and also neuromodulatory motoneurons. The latter form a unique class of unpaired neurons with bilaterally symmetrical axons that release octopamine to alter the efficacy of synaptic transmission and regulate muscle energy metabolism by activating glycolysis. Octopaminergic neurons that innervate muscles with a high energy demand, for example, flight muscles that move the wings of a locust up and down, are active during rest but are inhibited during flight and its preparatory phase, a jump. Therefore, it is argued that these neurons are involved in providing locusts with the necessary fuel at takeoff, but then may aid the switch to lipid oxidation during flight. In general, the octopaminergic system may switch the whole organism from a tonic to a dynamic state.


Assuntos
Insetos/fisiologia , Atividade Motora/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Animais , Humanos , Transmissão Sináptica
7.
BMC Evol Biol ; 10: 255, 2010 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-20727203

RESUMO

BACKGROUND: The composition of the arthropod head is one of the most contentious issues in animal evolution. In particular, controversy surrounds the homology and innervation of segmental cephalic appendages by the brain. Onychophora (velvet worms) play a crucial role in understanding the evolution of the arthropod brain, because they are close relatives of arthropods and have apparently changed little since the Early Cambrian. However, the segmental origins of their brain neuropils and the number of cephalic appendages innervated by the brain--key issues in clarifying brain composition in the last common ancestor of Onychophora and Arthropoda--remain unclear. RESULTS: Using immunolabelling and neuronal tracing techniques in the developing and adult onychophoran brain, we found that the major brain neuropils arise from only the anterior-most body segment, and that two pairs of segmental appendages are innervated by the brain. The region of the central nervous system corresponding to the arthropod tritocerebrum is not differentiated as part of the onychophoran brain but instead belongs to the ventral nerve cords. CONCLUSIONS: Our results contradict the assumptions of a tripartite (three-segmented) brain in Onychophora and instead confirm the hypothesis of bipartite (two-segmented) brain composition. They suggest that the last common ancestor of Onychophora and Arthropoda possessed a brain consisting of protocerebrum and deutocerebrum whereas the tritocerebrum evolved in arthropods.


Assuntos
Artrópodes/anatomia & histologia , Evolução Biológica , Encéfalo/anatomia & histologia , Animais , Artrópodes/embriologia , Encéfalo/embriologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-19924416

RESUMO

This study analyses the maturation of centrally generated flight motor patterns during metamorphosis of Manduca sexta. Bath application of the octopamine agonist chlordimeform to the isolated central nervous system of adult moths reliably induces fictive flight patterns in wing depressor and elevator motoneurons. Pattern maturation is investigated by chlordimeform application at different developmental stages. Chlordimeform also induces motor patterns in larval ganglia, which differ from fictive flight, indicating that in larvae and adults, octopamine affects different networks. First changes in motoneuron activity occur at the pupal stage P10. Rhythmic motor output is induced in depressor, but not in elevator motoneurons at P12. Adult-like fictive flight activity in motoneurons is observed at P16 and increases in speed and precision until emergence 2 days later. Pharmacological block of chloride channels with picrotoxin also induces fictive flight in adults, suggesting that the pattern-generating network can be activated by the removal of inhibition, and that proper network function does not rely on GABA(A) receptors. Our results suggest that the flight pattern-generating network becomes gradually established between P12 and P16, and is further refined until adulthood. These findings are discussed in the context of known physiological and structural CNS development during Manduca metamorphosis.


Assuntos
Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/crescimento & desenvolvimento , Voo Animal/fisiologia , Manduca/anatomia & histologia , Manduca/crescimento & desenvolvimento , Fatores Etários , Animais , Sistema Nervoso Central/metabolismo , Canais de Cloreto/efeitos dos fármacos , Canais de Cloreto/metabolismo , Clorfenamidina/farmacologia , Feminino , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/crescimento & desenvolvimento , Gânglios dos Invertebrados/metabolismo , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Metamorfose Biológica/efeitos dos fármacos , Metamorfose Biológica/fisiologia , Inibidores da Monoaminoxidase/farmacologia , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Movimento/fisiologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Octopamina/agonistas , Periodicidade , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Asas de Animais/inervação , Asas de Animais/fisiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-20730436

RESUMO

Reduction of tympanal hearing organs is repeatedly found amongst insects and is associated with weakened selection for hearing. There is also an associated wing reduction, since flight is no longer required to evade bats. Wing reduction may also affect sound production. Here, the auditory system in four silent grasshopper species belonging to the Podismini is investigated. In this group, tympanal ears occur but sound signalling does not. The tympanal organs range from fully developed to remarkably reduced tympana. To evaluate the effects of tympanal regression on neuronal organisation and auditory sensitivity, the size of wings and tympana, sensory thresholds and sensory central projections are compared. Reduced tympanal size correlates with a higher auditory threshold. The threshold curves of all four species are tuned to low frequencies with a maximal sensitivity at 3-5 kHz. Central projections of the tympanal nerve show characteristics known from fully tympanate acridid species, so neural elements for tympanal hearing have been strongly conserved across these species. The results also confirm the correlation between reduction in auditory sensitivity and wing reduction. It is concluded that the auditory sensitivity of all four species may be maintained by stabilising selective forces, such as predation.


Assuntos
Evolução Biológica , Gafanhotos/anatomia & histologia , Gafanhotos/fisiologia , Animais , Vias Auditivas/anatomia & histologia , Vias Auditivas/fisiologia , Limiar Auditivo/fisiologia , Orelha Média/anatomia & histologia , Orelha Média/inervação , Orelha Média/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Masculino
10.
Front Physiol ; 11: 376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390871

RESUMO

Insects are the largest group of animals. They are capable of surviving in virtually all environments from arid deserts to the freezing permafrost of polar regions. This success is due to their great capacity to tolerate a range of environmental stresses, such as low temperature. Cold/freezing stress affects many physiological processes in insects, causing changes in main metabolic pathways, cellular dehydration, loss of neuromuscular function, and imbalance in water and ion homeostasis. The neuroendocrine system and its related signaling mediators, such as neuropeptides and biogenic amines, play central roles in the regulation of the various physiological and behavioral processes of insects and hence can also potentially impact thermal tolerance. In response to cold stress, various chemical signals are released either via direct intercellular contact or systemically. These are signals which regulate osmoregulation - capability peptides (CAPA), inotocin (ITC)-like peptides, ion transport peptide (ITP), diuretic hormones and calcitonin (CAL), substances related to the general response to various stress factors - tachykinin-related peptides (TRPs) or peptides responsible for the mobilization of body reserves. All these processes are potentially important in cold tolerance mechanisms. This review summarizes the current knowledge on the involvement of the neuroendocrine system in the cold stress response and the possible contributions of various signaling molecules in this process.

11.
Invert Neurosci ; 19(2): 5, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31073644

RESUMO

Here, we report the findings after application of neurobiotin tracing to pallial and stellar nerves in the mantle of the cephalopod mollusk Octopus vulgaris and to the axial nerve cord in its arm. Neurobiotin backfilling is a known technique in other molluscs, but it is applied to octopus for the first time to be best of our knowledge. Different neural tracing techniques have been carried out in cephalopods to study the intricate neural connectivity of their nervous system, but mapping the nervous connections in this taxon is still incomplete, mainly due to the absence of a reliable tracing method allowing whole-mount imaging. In our experiments, neurobiotin backfilling allowed: (1) imaging of large/thick samples (larger than 2 mm) through optical clearing; (2) additional application of immunohistochemistry on the backfilled tissues, allowing identification of neural structures by coupling of a specific antibody. This work opens a series of future studies aimed to the identification of the neural diagram and connectome of octopus nervous system.


Assuntos
Imuno-Histoquímica/métodos , Vias Neurais/anatomia & histologia , Octopodiformes/anatomia & histologia , Animais , Biotina/análogos & derivados , Corantes
12.
Neurosci Lett ; 692: 77-82, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30391322

RESUMO

Higher motor centers and central pattern generators (CPGs) interact in the control of coordinated leg movements during locomotion throughout the animal kingdom. The subesophageal ganglion (SEG) is one of the insect head ganglia reported to have a role in the control of walking behavior. Here we explored the functional relations between the SEG and the thoracic leg CPGs in the desert locust. Backfill staining revealed about 300 SEG descending interneurons (DINs) altogether. Recordings from an in-vitro isolated chain of thoracic ganglia, with intact or severed connections to the SEG, during pharmacological activation were used to determine how the SEG affects the centrally generated motor output to the legs. The SEG was demonstrated to both activate leg CPGs and synchronize their bilateral activity. The role of the SEG in insect locomotion is discussed in light of these findings.


Assuntos
Geradores de Padrão Central/fisiologia , Gânglios dos Invertebrados/fisiologia , Gafanhotos/fisiologia , Extremidade Inferior/fisiologia , Neurônios Motores/fisiologia , Animais , Interneurônios/fisiologia , Extremidade Inferior/inervação , Masculino , Caminhada
13.
J Comp Neurol ; 527(6): 1027-1038, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30444529

RESUMO

In this study, we describe a cluster of tyraminergic/octopaminergic neurons in the lateral dorsal deutocerebrum of desert locusts (Schistocerca gregaria) with descending axons to the abdominal ganglia. In the locust, these neurons synthesize octopamine from tyramine stress-dependently. Electrophysiological recordings in locusts reveal that they respond to mechanosensory touch stimuli delivered to various parts of the body including the antennae. A similar cluster of tyraminergic/octopaminergic neurons was also identified in the American cockroach (Periplaneta americana) and the pink winged stick insect (Sipyloidea sipylus). It is suggested that these neurons release octopamine in the ventral nerve cord ganglia and, most likely, convey information on arousal and/or stressful stimuli to neuronal circuits thus contributing to the many actions of octopamine in the central nervous system.


Assuntos
Encéfalo/citologia , Gafanhotos/anatomia & histologia , Neurônios Eferentes/citologia , Octopamina , Tiramina , Animais , Encéfalo/fisiologia , Gânglios/citologia , Gânglios/fisiologia , Gafanhotos/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios Eferentes/fisiologia , Periplaneta/citologia , Periplaneta/fisiologia
14.
J Neurosci ; 27(41): 11122-31, 2007 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17928454

RESUMO

Insect flight is one of the fastest, most intense and most energy-demanding motor behaviors. It is modulated on multiple levels by the biogenic amine octopamine. Within the CNS, octopamine acts directly on the flight central pattern generator, and it affects motivational states. In the periphery, octopamine sensitizes sensory receptors, alters muscle contraction kinetics, and enhances flight muscle glycolysis. This study addresses the roles for octopamine and its precursor tyramine in flight behavior by genetic and pharmacological manipulation in Drosophila. Octopamine is not the natural signal for flight initiation because flies lacking octopamine [tyramine-beta-hydroxylase (TbetaH) null mutants] can fly. However, they show profound differences with respect to flight initiation and flight maintenance compared with wild-type controls. The morphology, kinematics, and development of the flight machinery are not impaired in TbetaH mutants because wing-beat frequencies and amplitudes, flight muscle structure, and overall dendritic structure of flight motoneurons are unaffected in TbetaH mutants. Accordingly, the flight behavior phenotypes can be rescued acutely in adult flies. Flight deficits are rescued by substituting octopamine but also by blocking the receptors for tyramine, which is enriched in TbetaH mutants. Conversely, ablating all neurons containing octopamine or tyramine phenocopies TbetaH mutants. Therefore, both octopamine and tyramine systems are simultaneously involved in regulating flight initiation and maintenance. Different sets of rescue experiments indicate different sites of action for both amines. These findings are consistent with a complex system of multiple amines orchestrating the control of motor behaviors on multiple levels rather than single amines eliciting single behaviors.


Assuntos
Aminas Biogênicas/antagonistas & inibidores , Aminas Biogênicas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Voo Animal/fisiologia , Animais , Aminas Biogênicas/fisiologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , Masculino , Oxigenases de Função Mista/deficiência , Oxigenases de Função Mista/genética , Atividade Motora/genética , Mutação , Octopamina/antagonistas & inibidores , Octopamina/genética , Octopamina/fisiologia
15.
J Insect Physiol ; 54(1): 51-61, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17931650

RESUMO

Octopamine plays a major role in insect motor control and is released from dorsal unpaired median (DUM) neurones, a group of cells located on the dorsal midline of each ganglion. We were interested whether and how these neurones are activated during walking and chose the semi-intact walking preparation of stick insects that offers to investigate single leg-stepping movements. DUM neurones were characterized in the thoracic nerve cord by backfilling lateral nerves. These backfills revealed a population of 6-8 efferent DUM cells per thoracic segment. Mesothoracic DUM cells were subsequently recorded during middle leg stepping and characterized by intracellular staining. Seven out of eight identified individual different types of DUM neurones were efferent. Seven types except the DUMna nl2 were tonically depolarized during middle leg stepping and additional phasic depolarizations in membrane potential linked to the stance phase of the middle leg were observed. These DUM neurones were all multimodal and received depolarizing synaptic drive when the abdomen, antennae or different parts of the leg were mechanically stimulated. We never observed hyperpolarising synaptic inputs to DUM neurones. Only one type of DUM neurone, DUMna, exhibited spontaneous rhythmic activity and was unaffected by different stimuli or walking movements.


Assuntos
Gânglios dos Invertebrados/fisiologia , Insetos/fisiologia , Neurônios/fisiologia , Caminhada/fisiologia , Animais , Eletrofisiologia , Gânglios dos Invertebrados/citologia , Técnicas Histológicas , Octopamina/metabolismo
16.
J Insect Physiol ; 54(1): 240-54, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18021797

RESUMO

Insect thoracic ganglia contain efferent octopaminergic unpaired median neurons (UM neurons) located in the midline, projecting bilaterally and modulating neuromuscular transmission, muscle contraction kinetics, sensory sensitivity and muscle metabolism. In locusts, these neurons are located dorsally or ventrally (DUM- or VUM-neurons) and divided into functionally different sub-populations activated during different motor tasks. This study addresses the responsiveness of locust thoracic DUM neurons to various sensory stimuli. Two classes of sense organs, cuticular exteroreceptor mechanosensilla (tactile hairs and campaniform sensilla), and photoreceptors (compound eyes and ocelli) elicited excitatory reflex responses. Chordotonal organ joint receptors caused no responses. The tympanal organ (Müller's organ) elicited weak excitatory responses most likely via generally increased network activity due to increased arousal. Vibratory stimuli to the hind leg subgenual organ never elicited responses. Whereas DUM neurons innervating wing muscles are not very responsive to sensory stimulation, those innervating leg and other muscles are very responsive to stimulation of exteroreceptors and hardly responsive to stimulation of proprioceptors. After cutting both cervical connectives all mechanosensory excitation is lost, even for sensory inputs from the abdomen. This suggests that, in contrast to motor neurons, the sensory inputs to octopaminergic efferent neuromodulatory cells are pre-processed in the suboesophageal ganglion.


Assuntos
Gânglios dos Invertebrados/fisiologia , Gafanhotos/fisiologia , Mecanotransdução Celular/fisiologia , Neurônios Eferentes/metabolismo , Receptores de Amina Biogênica/metabolismo , Visão Ocular/fisiologia , Animais , Estimulação Física , Fatores de Tempo
17.
Curr Biol ; 28(22): R1290-R1291, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30458143

RESUMO

Lateralized behaviours are widespread among the animals, including insects with their miniature brains, perhaps being a way of maximising neural capacity (reviewed in [1,2]). However, evidence for functional asymmetries in the neural circuitry itself is scarce. Here, using bilateral simultaneous recordings from the ex vivo nervous system of desert locusts, we show that the neural control of their forelimbs is asymmetric. This asymmetry was retained throughout the experimental period and either with or without the suboesophageal ganglion (SOG). These findings provide evidence for hard-wired neural sidedness and contribute to our understanding of the lateralization observed in in-vivo motor behaviours.


Assuntos
Membro Anterior/fisiologia , Lateralidade Funcional/fisiologia , Gafanhotos/fisiologia , Animais , Encéfalo/fisiologia , Gânglios , Insetos , Sistema Nervoso , Neurônios/fisiologia
19.
Front Syst Neurosci ; 12: 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615874

RESUMO

A comparison between the axon terminals of octopaminergic efferent dorsal or ventral unpaired median neurons in either desert locusts (Schistocerca gregaria) or fruit flies (Drosophila melanogaster) across skeletal muscles reveals many similarities. In both species the octopaminergic axon forms beaded fibers where the boutons or varicosities form type II terminals in contrast to the neuromuscular junction (NMJ) or type I terminals. These type II terminals are immunopositive for both tyramine and octopamine and, in contrast to the type I terminals, which possess clear synaptic vesicles, only contain dense core vesicles. These dense core vesicles contain octopamine as shown by immunogold methods. With respect to the cytomatrix and active zone peptides the type II terminals exhibit active zone-like accumulations of the scaffold protein Bruchpilot (BRP) only sparsely in contrast to the many accumulations of BRP identifying active zones of NMJ type I terminals. In the fruit fly larva marked dynamic changes of octopaminergic fibers have been reported after short starvation which not only affects the formation of new branches ("synaptopods") but also affects the type I terminals or NMJs via octopamine-signaling (Koon et al., 2011). Our starvation experiments of Drosophila-larvae revealed a time-dependency of the formation of additional branches. Whereas after 2 h of starvation we find a decrease in "synaptopods", the increase is significant after 6 h of starvation. In addition, we provide evidence that the release of octopamine from dendritic and/or axonal type II terminals uses a similar synaptic machinery to glutamate release from type I terminals of excitatory motor neurons. Indeed, blocking this canonical synaptic release machinery via RNAi induced downregulation of BRP in neurons with type II terminals leads to flight performance deficits similar to those observed for octopamine mutants or flies lacking this class of neurons (Brembs et al., 2007).

20.
Zoology (Jena) ; 122: 1-6, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28550947

RESUMO

In this article, the life history of the founding father of the departments of Zoology at the Universities of Cologne and Sao Paulo, Prof. Ernst Bresslau, is described on occasion of the establishing of the "Ernst Bresslau Guest Professorship" at the University of Cologne. His main scientific achievements are discussed, in particular his research on the evolutionary origin of the mammary apparatus, in addition to his broad interest in biological topics. Among the many technical advancements that he introduced was the micro slow-motion camera developed together with the Zeiss Company which allowed to film ciliary beats at high speeds.


Assuntos
Universidades , Zoologia , Animais , Distinções e Prêmios , Brasil , Alemanha , História do Século XX , Humanos , Universidades/história , Zoologia/educação , Zoologia/história
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA