Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trends Immunol ; 42(10): 846-848, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34538594

RESUMO

Selectively targeting facets of neutrophil function could benefit infectious and inflammatory diseases. Amara et al. report on a compound which blocks human neutrophil activation by activating the glycolytic enzyme phosphofructokinase, liver-type (PFKL). Altering glucose fate by modulating this key enzymatic step could dramatically alter the function and fate of phagocytes.


Assuntos
Neutrófilos , Fagócitos , Glucose , Humanos , Ativação de Neutrófilo , Fosfofrutoquinase-1
2.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474145

RESUMO

Neutrophils are dynamic cells, playing a critical role in pathogen clearance; however, neutrophil infiltration into the tissue can act as a double-edged sword. They are one of the primary sources of excessive inflammation during infection, which has been observed in many infectious diseases including pneumonia and active tuberculosis (TB). Neutrophil function is influenced by interactions with other immune cells within the inflammatory lung milieu; however, how these interactions affect neutrophil function is unclear. Our study examined the macrophage-neutrophil axis by assessing the effects of conditioned medium (MΦ-CM) from primary human monocyte-derived macrophages (hMDMs) stimulated with LPS or a whole bacterium (Mycobacterium tuberculosis) on neutrophil function. Stimulated hMDM-derived MΦ-CM boosts neutrophil activation, heightening oxidative and glycolytic metabolism, but diminishes migratory potential. These neutrophils exhibit increased ROS production, elevated NET formation, and heightened CXCL8, IL-13, and IL-6 compared to untreated or unstimulated hMDM-treated neutrophils. Collectively, these data show that MΦ-CM from stimulated hMDMs activates neutrophils, bolsters their energetic profile, increase effector and inflammatory functions, and sequester them at sites of infection by decreasing their migratory capacity. These data may aid in the design of novel immunotherapies for severe pneumonia, active tuberculosis and other diseases driven by pathological inflammation mediated by the macrophage-neutrophil axis.


Assuntos
Mycobacterium tuberculosis , Pneumonia , Tuberculose , Humanos , Neutrófilos/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Pneumonia/metabolismo
3.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805837

RESUMO

For over 50 years, patients with drug-sensitive and drug-resistant tuberculosis have undergone long, arduous, and complex treatment processes with several antimicrobials. With the prevalence of drug-resistant strains on the rise and new therapies for tuberculosis urgently required, we assessed whether manipulating iron levels in macrophages infected with mycobacteria offered some insight into improving current antimicrobials that are used to treat drug-resistant tuberculosis. We investigated if the iron chelator, desferrioxamine, can support the function of human macrophages treated with an array of second-line antimicrobials, including moxifloxacin, bedaquiline, amikacin, clofazimine, linezolid and cycloserine. Primary human monocyte-derived macrophages were infected with Bacillus Calmette-Guérin (BCG), which is pyrazinamide-resistant, and concomitantly treated for 5 days with desferrioxamine in combination with each one of the second-line tuberculosis antimicrobials. Our data indicate that desferrioxamine used as an adjunctive treatment to bedaquiline significantly reduced the bacterial load in human macrophages infected with BCG. Our findings also reveal a link between enhanced bactericidal activity and increases in specific cytokines, as the addition of desferrioxamine increased levels of IFN-γ, IL-6, and IL-1ß in BCG-infected human monocyte-derived macrophages (hMDMs) treated with bedaquiline. These results provide insight, and an in vitro proof-of-concept, that iron chelators may prove an effective adjunctive therapy in combination with current tuberculosis antimicrobials.


Assuntos
Antituberculosos/farmacologia , Desferroxamina/farmacologia , Diarilquinolinas/farmacologia , Quelantes de Ferro/farmacologia , Ferro/metabolismo , Macrófagos/efeitos dos fármacos , Mycobacterium bovis/efeitos dos fármacos , Amicacina/farmacologia , Carga Bacteriana/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clofazimina/farmacologia , Ciclosserina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Expressão Gênica , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Linezolida/farmacologia , Macrófagos/imunologia , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana , Moxifloxacina/farmacologia , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium bovis/metabolismo , Cultura Primária de Células , Pirazinamida/farmacologia
4.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830070

RESUMO

Tuberculosis (TB) remains a global health challenge. Patients with drug-sensitive and drug-resistant TB undergo long, arduous, and complex treatment regimens, often involving multiple antimicrobials. While these drugs were initially implemented based on their bactericidal effects, some studies show that TB antimicrobials can also directly affect cells of the immune system, altering their immune function. As use of these antimicrobials has been the mainstay of TB therapy for over fifty years now, it is more important than ever to understand how these antimicrobials affect key pathways of the immune system. One such central pathway, which underpins the immune response to a variety of infections, is immunometabolism, namely glycolysis and oxidative phosphorylation (OXPHOS). We hypothesise that in addition to their direct bactericidal effect on Mycobacterium tuberculosis (Mtb), current TB antimicrobials can modulate immunometabolic profiles and alter mitochondrial function in primary human macrophages. Human monocyte-derived macrophages (hMDMs) were differentiated from PBMCs isolated from healthy blood donors, and treated with four first-line and six second-line TB antimicrobials three hours post stimulation with either iH37Rv-Mtb or lipopolysaccharide (LPS). 24 h post stimulation, baseline metabolism and mitochondrial function were determined using the Seahorse Extracellular Flux Analyser. The effect of these antimicrobials on cytokine and chemokine production was also assayed using Meso Scale Discovery Multi-Array technology. We show that some of the TB antimicrobials tested can significantly alter OXPHOS and glycolysis in uninfected, iH37Rv-Mtb, and LPS-stimulated hMDMs. We also demonstrate how these antimicrobial-induced immunometabolic effects are linked with alterations in mitochondrial function. Our results show that TB antimicrobials, specifically clofazimine, can modify host immunometabolism and mitochondrial function. Moreover, clofazimine significantly increased the production of IL-6 in human macrophages that were stimulated with iH37Rv-Mtb. This provides further insight into the use of some of these TB antimicrobials as potential host-directed therapies in patients with early and active disease, which could help to inform TB treatment strategies in the future.


Assuntos
Antituberculosos/imunologia , Antituberculosos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Clofazimina/farmacologia , Citocinas/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Cultura Primária de Células
5.
Cancer Immunol Immunother ; 69(8): 1577-1588, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32306077

RESUMO

HLA-DR, an MHC class II molecule that mediates antigen presentation, is a favourable prognostic indicator in colorectal cancer (CRC). However, the dynamics and location of HLA-DR expression during CRC development are unclear. We aimed to define HLA-DR expression by immunohistochemistry in colorectal epithelium and stromal tissue at different stages of cancer development, assessing non-neoplastic colorectal adenocarcinoma-adjacent tissue, adenomas and carcinoma tissues, and to associate HLA-DR levels with clinical outcomes. Patients with higher than median HLA-DR expression survived at least twice as long as patients with lower expression. This association was significant for HLA-DR staining in the colorectal carcinoma epithelium (n = 152, p = 0.011, HR 1.9, 95% CI 1.15-3.15) and adjacent non-neoplastic epithelium (n = 152, p < 0.001, HR 2.7, 95% CI 1.59-4.66), but not stroma. In stage II cases, however, the prognostic value of HLA-DR expression was significant only in adjacent non-neoplastic tissues, for both epithelium (n = 63, p = 0.015, HR 3.6, 95% CI 1.279-10.25) and stroma (n = 63, p = 0.018, HR 5.07, 95% CI 1.32-19.49). HLA-DR was lower in carcinoma tissue compared to matched adenomas (n = 35), in epithelium (p < 0.01) and stroma (p < 0.001). HLA-DR was further reduced in late-stage carcinoma (n = 101) compared to early stage (n = 105), in epithelium (p < 0.001) and stroma (p < 0.01). HLA-DR expression was lower (p < 0.05) in the adjacent non-neoplastic epithelium of patients with cancer recurrence. We demonstrate a progressive loss of HLA-DR in epithelial and stromal tissue compartments during CRC development and show prognostic ability in carcinoma-adjacent non-neoplastic tissues, highlighting the importance of this molecule in the anti-cancer immune response. These findings may have wider implications for immunotherapeutic interventions.


Assuntos
Adenocarcinoma/patologia , Adenoma/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Antígenos HLA-DR/metabolismo , Recidiva Local de Neoplasia/patologia , Células Estromais/metabolismo , Adenocarcinoma/metabolismo , Adenoma/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/metabolismo , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
6.
Cancer Immunol Immunother ; 69(12): 2635-2649, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32613271

RESUMO

Barrett's esophagus (BE) is an inflammatory condition and a neoplastic precursor to esophageal adenocarcinoma (EAC). Inflammasome signaling, which contributes to acute and chronic inflammation, results in caspase-1 activation leading to the secretion of IL-1ß and IL-18, and inflammatory cell death (pyroptosis). This study aimed to characterize caspase-1 expression, and its functional importance, during disease progression to BE and EAC. Three models of disease progression (Normal-BE-EAC) were employed to profile caspase-1 expression: (1) a human esophageal cell line model; (2) a murine model of BE; and (3) resected tissue from BE-associated EAC patients. BE patient biopsies and murine BE organoids were cultured ex vivo in the presence of a caspase-1 inhibitor, to determine the importance of caspase-1 for inflammatory cytokine and chemokine secretion.Epithelial caspase-1 expression levels were significantly enhanced in BE (p < 0.01). In contrast, stromal caspase-1 levels correlated with histological inflammation scores during disease progression (p < 0.05). Elevated secretion of IL-1ß from BE explanted tissue, compared to adjacent normal tissue (p < 0.01), confirmed enhanced activity of caspase-1 in BE tissue. Caspase-1 inhibition in LPS-stimulated murine BE organoids caused a significant reduction in IL-1ß (p < 0.01) and CXCL1 (p < 0.05) secretion, confirming the importance of caspase-1 in the production of cytokines and chemokines associated with disease progression from BE to EAC. Targeting caspase-1 activity in BE patients should therefore be tested as a novel strategy to prevent inflammatory complications associated with disease progression.


Assuntos
Adenocarcinoma/imunologia , Esôfago de Barrett/imunologia , Caspase 1/metabolismo , Mucosa Esofágica/patologia , Neoplasias Esofágicas/imunologia , Inflamassomos/imunologia , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Idoso , Animais , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Biópsia , Caspase 1/imunologia , Inibidores de Caspase/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Quimiocina CXCL1/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Mucosa Esofágica/citologia , Mucosa Esofágica/imunologia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/cirurgia , Esofagectomia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
7.
Am J Pathol ; 189(10): 1916-1932, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31404541

RESUMO

KH-type splicing regulatory protein (KHSRP) is a multifunctional nucleic acid binding protein implicated in key aspects of cancer cell biology: inflammation and cell-fate determination. However, the role KHSRP plays in colorectal cancer (CRC) tumorigenesis remains largely unknown. Using a combination of in silico analysis of large data sets, ex vivo analysis of protein expression in patients, and mechanistic studies using in vitro models of CRC, we investigated the oncogenic role of KHSRP. We demonstrated KHSRP expression in the epithelial and stromal compartments of both primary and metastatic tumors. Elevated expression was found in tumor versus matched normal tissue, and these findings were validated in larger independent cohorts in silico. KHSRP expression was a prognostic indicator of worse overall survival (hazard ratio, 3.74; 95% CI, 1.43-22.97; P = 0.0138). Mechanistic data in CRC cell line models supported a role of KHSRP in driving epithelial cell proliferation in both a primary and metastatic setting, through control of the G1/S transition. In addition, KHSRP promoted a proangiogenic extracellular environment by regulating the secretion of oncogenic proteins involved in diverse cellular processes, such as migration and response to cellular stress. Our study provides novel mechanistic insight into the tumor-promoting effects of KHSRP in CRC.


Assuntos
Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Microambiente Tumoral , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Biomarcadores Tumorais/genética , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteínas de Ligação a RNA/genética , Taxa de Sobrevida , Transativadores/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Rheumatology (Oxford) ; 59(10): 2816-2828, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32047926

RESUMO

OBJECTIVES: We investigated the reciprocal relationship linking fibroblast-like synoviocytes (FLS) and T lymphocytes in the inflamed RA synovium and subsequently targeted cellular metabolic pathways in FLS to identify key molecular players in joint inflammation. METHODS: RA FLS were cultured with CD4 T cells or T cell conditioned medium (CD4CM); proliferation, expression of adhesion molecules and intracellular cytokines were examined by flow cytometry. FLS invasiveness and secreted cytokines were measured by transwell matrigel invasion chambers and ELISA, while metabolic profiles were determined by extracellular Seahorse flux analysis. Gene expression was quantified by real-time quantitative RT-PCR. RESULTS: Our results showed mutual activation between CD4 T cells and FLS, which resulted in increased proliferation and expression of intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 by both CD4 T cells and FLS. Furthermore, interaction between CD4 T cells and FLS resulted in an increased frequency of TNF-α+, IFN-γ+ and IL-17A+ CD4 T cells and augmented TNF-α, IFN-γ, IL-17A, IL-6, IL-8 and VEGF secretion. Moreover, CD4CM promoted invasiveness and boosted glycolysis in FLS while downregulating oxidative phosphorylation, effects paralleled by increased glucose transporters GLUT1 and GLUT3; key glycolytic enzymes GSK3A, HK2, LDHA and PFKFB3; angiogenic factor VEGF and MMP-3 and MMP-9. Importantly, these effects were reversed by the glycolytic inhibitor 2-DG and AMP analogue 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). CONCLUSION: This study demonstrates that CD4 T cells elicit an aggressive phenotype in FLS, which subsequently upregulate glycolysis to meet the increased metabolic demand. Accordingly, 2-DG and AICAR prevent this activation, suggesting that glycolytic manipulation could have clinical implications for RA treatment.


Assuntos
Artrite Reumatoide/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Metabolismo Energético , Membrana Sinovial/citologia , Sinoviócitos/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Proteínas Angiogênicas/metabolismo , Artrite Reumatoide/imunologia , Linfócitos T CD4-Positivos/fisiologia , Moléculas de Adesão Celular/metabolismo , Ensaios de Migração Celular , Proliferação de Células , Meios de Cultivo Condicionados , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Glicólise/fisiologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Interferon gama/metabolismo , Interleucinas/metabolismo , Ativação Linfocitária , Fosforilação Oxidativa , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinoviócitos/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509954

RESUMO

Barrett's esophagus (BE), a chronic inflammatory condition, is the leading risk factor for esophageal adenocarcinoma (EAC). In inflammation to cancer pathways, oxidative stress profiles have been linked to cancer progression. However, the relevance of oxidative stress profiles along the BE-disease sequence remains to be elucidated. In this study, markers of oxidative stress; DNA adducts (8-oxo-dG) and lipoperoxidation (4-HNE), and markers of proliferation (Ki67) were measured in patient biopsies representing the BE-disease sequence. Differences in expression of these markers in Barrett's patients with cancer-progression and non-progression were examined. Proliferation was reduced in Barrett's specialized intestinal metaplasia (SIM) compared with EAC (p < 0.035). Correcting for cell proliferation levels, a confounding factor, linked to oxidative stress profiles, SIM demonstrated increased levels of 8-oxo-dG and 4-HNE (p < 0.05) compared with EAC. Longitudinal analysis of Barrett's patients demonstrated decreased levels of 8-oxo-dG in SIM cancer progression (p < 0.05). BE is an environment of increased oxidative stress and inflammation. Patients with progressive disease demonstrated reduced oxidative stress levels in 8-oxo-dG. Perhaps these alterations facilitate Barrett's progression, whereas in non-progressive disease, cells follow the rules of increased oxidative stress ultimately triggers cell apoptosis, thereby preventing propagation and survival.


Assuntos
8-Hidroxi-2'-Desoxiguanosina/metabolismo , Adenocarcinoma/genética , Aldeídos/metabolismo , Esôfago de Barrett/genética , Neoplasias Esofágicas/genética , Estresse Oxidativo , Transcriptoma , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/metabolismo , Proliferação de Células/genética , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade
10.
Int J Mol Sci ; 19(11)2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404157

RESUMO

Barrett's esophagus and esophageal cancer lack prognostic markers that allow the tailoring of personalized medicine and biomarkers with potential to provide insight into treatment response. This study aims to characterize mitochondrial function across the metaplasia-dysplasia-adenocarcinoma disease sequence in Barrett's esophagus and examines the functional effect of manipulating mitochondrial genes. Mitochondrial genes of interest were validated in in vitro cell lines across the metaplasia (QH), dysplasia (GO) and adenocarcinoma (OE33) sequence and in in vivo patient tissue samples. These genes were subsequently knocked down in QH and OE33 cells and the functional effect of siRNA-induced knockdown on reactive oxygen species production, mitochondrial mass, mitochondrial membrane potential and cellular metabolism was investigated. Three global mitochondrial genes (BAK1, FIS1 and SFN) were differentially altered across the in vivo Barrett's disease sequence. We also demonstrate that knockdown of BAK1, FIS1 and SFN in vitro resulted in significant alterations in mitochondrial membrane potential; however, no differences in reactive oxygen species or mitochondrial mass were observed. Furthermore, knockdown of these genes in esophageal adenocarcinoma cells significantly altered cellular metabolism. In conclusion, we found that differential expression of BAK1, FIS1, and SFN were altered across the Barrett's disease sequence and manipulation of these genes elicited significant effects on mitochondrial membrane potential.


Assuntos
Proteínas 14-3-3/genética , Esôfago de Barrett/genética , Esôfago de Barrett/metabolismo , Biomarcadores Tumorais/genética , Exorribonucleases/genética , Genes Mitocondriais , Potencial da Membrana Mitocondrial/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteínas 14-3-3/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular , Exorribonucleases/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
11.
J Clin Invest ; 133(2)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36282571

RESUMO

BackgroundHeterologous effects of vaccines are mediated by "trained immunity," whereby myeloid cells are metabolically and epigenetically reprogrammed, resulting in heightened responses to subsequent insults. Adenovirus vaccine vector has been reported to induce trained immunity in mice. Therefore, we sought to determine whether the ChAdOx1 nCoV-19 vaccine (AZD1222), which uses an adenoviral vector, could induce trained immunity in vivo in humans.MethodsTen healthy volunteers donated blood on the day before receiving the ChAdOx1 nCoV-19 vaccine and on days 14, 56, and 83 after vaccination. Monocytes were purified from PBMCs, cell phenotype was determined by flow cytometry, expression of metabolic enzymes was quantified by RT-qPCR, and production of cytokines and chemokines in response to stimulation ex vivo was analyzed by multiplex ELISA.ResultsMonocyte frequency and count were increased in peripheral blood up to 3 months after vaccination compared with their own prevaccine controls. Expression of HLA-DR, CD40, and CD80 was enhanced on monocytes for up to 3 months following vaccination. Moreover, monocytes had increased expression of glycolysis-associated enzymes 2 months after vaccination. Upon stimulation ex vivo with unrelated antigens, monocytes produced increased IL-1ß, IL-6, IL-10, CXCL1, and MIP-1α and decreased TNF, compared with prevaccine controls. Resting monocytes produced more IFN-γ, IL-18, and MCP-1 up to 3 months after vaccination compared with prevaccine controls.ConclusionThese data provide evidence for the induction of trained immunity following a single dose of the ChAdOx1 nCoV-19 vaccine.FundingThis work was funded by the Health Research Board (EIA-2019-010) and Science Foundation Ireland Strategic Partnership Programme (proposal ID 20/SPP/3685).


Assuntos
COVID-19 , ChAdOx1 nCoV-19 , Humanos , Animais , Camundongos , Vacinas contra COVID-19 , Imunidade Treinada , COVID-19/prevenção & controle , Vacinação , Imunização
12.
World J Gastrointest Oncol ; 15(8): 1349-1365, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37663943

RESUMO

BACKGROUND: There is an intimate crosstalk between cancer formation, dissemination, treatment response and the host immune system, with inducing tumour cell death the ultimate therapeutic goal for most anti-cancer treatments. However, inducing a purposeful synergistic response between conventional therapies and the immune system remains evasive. The release of damage associated molecular patterns (DAMPs) is indicative of immunogenic cell death and propagation of established immune responses. However, there is a gap in the literature regarding the importance of DAMP expression in oesophageal adenocarcinoma (OAC) or by immune cells themselves. AIM: To investigate the effects of conventional therapies on DAMP expression and to determine whether OAC is an immunogenic cancer. METHODS: We investigated the levels of immunogenic cell death-associated DAMPs, calreticulin (CRT) and HMGB1 using an OAC isogenic model of radioresistance. DAMP expression was also assessed directly using ex vivo cancer patient T cells (n = 10) and within tumour biopsies (n = 9) both pre and post-treatment with clinically relevant chemo(radio)therapeutics. RESULTS: Hypoxia in combination with nutrient deprivation significantly reduces DAMP expression by OAC cells in vitro. Significantly increased frequencies of T cell DAMP expression in OAC patients were observed following chemo(radio)therapy, which was significantly higher in tumour tissue compared with peripheral blood. Patients with high expression of HMGB1 had a significantly better tumour regression grade (TRG 1-2) compared to low expressors. CONCLUSION: In conclusion, OAC expresses an immunogenic phenotype with two distinct subgroups of high and low DAMP expressors, which correlated with tumour regression grade and lymphatic invasion. It also identifies DAMPs namely CRT and HMGB1 as potential promising biomarkers in predicting good pathological responses to conventional chemo(radio)therapies currently used in the multimodal management of locally advanced disease.

13.
Front Immunol ; 14: 1150754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359545

RESUMO

Introduction: This timely study assesses the immunosuppressive effects of surgery on cytotoxic Th1-like immunity and investigates if immune checkpoint blockade (ICB) can boost Th1-like immunity in the perioperative window in upper gastrointestinal cancer (UGI) patients. Methods: PBMCs were isolated from 11 UGI patients undergoing tumour resection on post-operative days (POD) 0, 1, 7 and 42 and expanded ex vivo using anti-CD3/28 and IL-2 for 5 days in the absence/presence of nivolumab or ipilimumab. T cells were subsequently immunophenotyped via flow cytometry to determine the frequency of T helper (Th)1-like, Th1/17-like, Th17-like and regulatory T cell (Tregs) subsets and their immune checkpoint expression profile. Lymphocyte secretions were also assessed via multiplex ELISA (IFN-γ, granzyme B, IL-17 and IL-10). The 48h cytotoxic ability of vehicle-, nivolumab- and ipilimumab-expanded PBMCs isolated on POD 0, 1, 7 and 42 against radiosensitive and radioresistant oesophageal adenocarcinoma tumour cells (OE33 P and OE33 R) was also examined using a cell counting kit-8 (CCK-8) assay to determine if surgery affected the killing ability of lymphocytes and whether the use of ICB could enhance cytotoxicity. Results: Th1-like immunity was suppressed in expanded PBMCs in the immediate post-operative setting. The frequency of expanded circulating Th1-like cells was significantly decreased post-operatively accompanied by a decrease in IFN-γ production and a concomitant increase in the frequency of expanded regulatory T cells with an increase in circulating levels of IL-10. Interestingly, PD-L1 and CTLA-4 immune checkpoint proteins were also upregulated on expanded Th1-like cells post-operatively. Additionally, the cytotoxic ability of expanded lymphocytes against oesophageal adenocarcinoma tumour cells was abrogated post-surgery. Of note, the addition of nivolumab or ipilimumab attenuated the surgery-mediated suppression of lymphocyte cytotoxicity, demonstrated by a significant increase in tumour cell killing and an increase in the frequency of Th1-like cells and Th1 cytokine production. Conclusion: These findings support the hypothesis of a surgery-mediated suppression in Th1-like cytotoxic immunity and highlights a rationale for the use of ICB within the perioperative setting to abrogate tumour-promoting effects of surgery and ameliorate the risk of recurrence.


Assuntos
Adenocarcinoma , Interleucina-10 , Humanos , Receptor de Morte Celular Programada 1 , Nivolumabe/uso terapêutico , Ipilimumab , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/cirurgia , Terapia de Imunossupressão
14.
World J Gastroenterol ; 28(21): 2302-2319, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35800186

RESUMO

BACKGROUND: In the contemporary era of cancer immunotherapy, an abundance of clinical and translational studies have reported radiotherapy (RT) and immunotherapies as a viable option for immunomodulation of many cancer subtypes, with many related clinical trials ongoing. In locally advanced disease, chemotherapy or chemoradiotherapy followed by surgical excision of the tumour remain the principal treatment strategy in oesophageal adenocarcinoma (OAC), however, the use of the host immune system to improve anti-tumour immunity is rapidly garnering increased support in the curative setting. AIM: To immunophenotype OAC patients' immune checkpoint (IC) expression with and without radiation and evaluate the effects of checkpoint blockade on cell viability. METHODS: In the contemporary era of cancer immunotherapy, an abundance of studies have demonstrated that combination RT and IC inhibitors (ICIs) are effective in the immunomodulation of many cancer subtypes, with many related clinical trials ongoing. Although surgical excision and elimination of tumour cells by chemotherapy or chemoradiotherapy remains the gold standard approach in OAC, the propagation of anti-tumour immune responses is rapidly garnering increased support in the curative setting. The aim of this body of work was to immunophenotype OAC patients' IC expression with and without radiation and to establish the impact of checkpoint blockade on cell viability. This study was a hybrid combination of in vitro and ex vivo models. Quantification of serum immune proteins was performed by enzyme-linked immunosorbent assay. Flow cytometry staining was performed to evaluate IC expression for in vitro OAC cell lines and ex vivo OAC biopsies. Cell viability in the presence of radiation with and without IC blockade was assessed by a cell counting kit-8 assay. RESULTS: We identified that conventional dosing and hypofractionated approaches resulted in increased IC expression (PD-1, PD-L1, TIM3, TIGIT) in vitro and ex vivo in OAC. There were two distinct subcohorts with one demonstrating significant upregulation of ICs and the contrary in the other cohort. Increasing IC expression post RT was associated with a more aggressive tumour phenotype and adverse features of tumour biology. The use of anti-PD-1 and anti-PD-L1 immunotherapies in combination with radiation resulted in a significant and synergistic reduction in viability of both radiosensitive and radioresistant OAC cells in vitro. Interleukin-21 (IL-21) and IL-31 significantly increased, with a concomitant reduction in IL-23 as a consequence of 4 Gray radiation. Similarly, radiation induced an anti-angiogenic tumour milieu with reduced expression of vascular endothelial growth factor-A, basic fibroblast growth factor, Flt-1 and placental growth factor. CONCLUSION: The findings of the current study demonstrate synergistic potential for the use of ICIs and ionising radiation to potentiate established anti-tumour responses in the neoadjuvant setting and is of particular interest in those with advanced disease, adverse features of tumour biology and poor treatment responses to conventional therapies.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Adenocarcinoma/genética , Adenocarcinoma/radioterapia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Feminino , Humanos , Fator de Crescimento Placentário , Fator A de Crescimento do Endotélio Vascular
15.
J Clin Invest ; 131(15)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34338227

RESUMO

Immunometabolism is a burgeoning field of investigation in tuberculosis host defense, susceptibility, and pathophysiology. Unbiased approaches to studying tuberculosis have, as expected, confirmed that pathways of immunometabolism are crucial in these disease processes. In this issue of the JCI, Reichmann et al. studied carefully controlled human lymph node tuberculosis and uncovered Sphingosine kinase 1 as a druggable target of interest that could support the infected host. Future host-directed therapy research might seek to establish the different cellular consequences of sphingolipid pathway manipulation. Animal models will be especially useful to establish the role of this pathway, which might target diseased organs to improve mycobactericidal effect and limit pathology.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Granuloma/genética , Interações Hospedeiro-Patógeno , Humanos , Linfonodos , Mycobacterium tuberculosis/genética , Transcriptoma , Tuberculose/tratamento farmacológico , Tuberculose/genética
16.
Front Immunol ; 12: 657261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927724

RESUMO

The Warburg effect, defined as increased glycolysis and decreased oxidative phosphorylation, occurs in murine macrophages following LPS stimulation and is required for activation. There are differences between human and murine macrophage metabolic responses to stimulation, with peak metabolite concentrations occurring earlier in humans than mice. Complex changes occur in the human immune system with age, resulting in the very young and the very old being more susceptible to infections. Anti-bacterial immune responses in umbilical cord immune cells are considered deficient but there is a paucity of data on the role that metabolism plays. We hypothesized that metabolic responses in human macrophages occur early during activation. In addition, we hypothesized that umbilical cord derived macrophages have an altered immunometabolic response compared with adult macrophages. We demonstrate that adult and cord blood monocyte derived macrophages (MDM) immediately increase glycolysis in response to stimulation with LPS or Mycobacterium tuberculosis (Mtb), however only adult MDM decrease oxidative phosphorylation. At 24 hours post stimulation, glycolysis remains elevated in both adult and cord blood MDM, oxidative phosphorylation remains unchanged in the cord blood MDM and has normalized in the adult MDM stimulated with Mtb. However, LPS stimulated adult MDM have increased oxidative phosphorylation at 24 hours, illustrating differences in metabolic responses to different stimuli, time-dependent variation in responses and differences in macrophage metabolism in adults compared with umbilical cord blood. We compared the phenotype and function of macrophages derived from adult or cord blood. Cord blood MDM secreted less TNF following Mtb stimulation and more IL-6 following LPS stimulation compared with adult MDM. Our findings demonstrate that whilst cord blood MDM exhibit an immediate increase in glycolytic flux in response to stimulation, similar to adult MDM, cord blood MDM do not concomitantly decrease oxygen consumption. This indicates that adult macrophages shift to Warburg metabolism immediately after stimulation, but cord blood macrophages do not. Understanding the differences in the metabolic profiles of macrophages over a human lifetime will enable the translation of immunometabolism into effective immuno-supportive therapies that could potentially be targeted at vulnerable populations, such as the very old and the very young.


Assuntos
Sangue Fetal/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Fatores Etários , Biomarcadores , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Glicólise , Humanos , Imunofenotipagem , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/imunologia , Fosforilação Oxidativa
17.
Front Immunol ; 12: 663695, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691015

RESUMO

In order to mount an appropriate immune response to infection, the macrophage must alter its metabolism by increasing aerobic glycolysis and concomitantly decreasing oxidative phosphorylation; a process known as the Warburg effect. Consequently, lactate, the end-product of glycolysis, accumulates in the extracellular environment. The subsequent effect of lactate on surrounding macrophages is poorly understood. Mycobacterium tuberculosis (Mtb), the causative organism of Tuberculosis (TB), is phagocytosed by macrophages in the airways. Mtb infected macrophages upregulate aerobic glycolysis and effector functions to try to kill the bacteria. Our lab has previously shown that human macrophages produce lactate in response to infection with Mtb. Although lactate has largely been considered a waste product of aerobic glycolysis, we hypothesised that the presence of extracellular lactate would impact subsequent immunometabolic responses and modulate macrophage function. We demonstrate that the presence of exogenous lactate has an immediate effect on the cellular metabolism of resting human macrophages; causing a decrease in extracellular acidification rate (ECAR; analogous to the rate of glycolysis) and an increase in the oxygen consumption rate (OCR; analogous to oxidative phosphorylation). When lactate-treated macrophages were stimulated with Mtb or LPS, glycolysis proceeds to increase immediately upon stimulation but oxidative phosphorylation remains stable compared with untreated cells that display a decrease in OCR. This resulted in a significantly reduced ECAR/OCR ratio early in response to stimulation. Since altered metabolism is intrinsically linked to macrophage function, we examined the effect of lactate on macrophage cytokine production and ability to kill Mtb. Lactate significantly reduced the concentrations of TNF and IL-1ß produced by human macrophages in response to Mtb but did not alter IL-10 and IL-6 production. In addition, lactate significantly improved bacillary clearance in human macrophages infected with Mtb, through a mechanism that is, at least in part, mediated by promoting autophagy. These data indicate that lactate, the product of glycolysis, has a negative feedback effect on macrophages resulting in an attenuated glycolytic shift upon subsequent stimulation and reduced pro-inflammatory cytokine production. Interestingly, this pro-resolution effect of lactate is associated with increased capacity to kill Mtb.


Assuntos
Glicólise/efeitos dos fármacos , Ácido Láctico/farmacologia , Macrófagos/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Células Cultivadas , Citocinas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Ácido Láctico/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Viabilidade Microbiana , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos
18.
Cancers (Basel) ; 13(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34439160

RESUMO

Response rates to the current gold standards of care for treating oesophageal adenocarcinoma (OAC) remain modest with 15-25% of patients achieving meaningful pathological responses, highlighting the need for novel therapeutic strategies. This study consists of immune, angiogenic, and inflammatory profiling of the tumour microenvironment (TME) and lymph node microenvironment (LNME) in OAC. The prognostic value of nodal involvement and clinicopathological features was compared using a retrospective cohort of OAC patients (n = 702). The expression of inhibitory immune checkpoints by T cells infiltrating tumour-draining lymph nodes (TDLNs) and tumour tissue post-chemo(radio)therapy at surgical resection was assessed by flow cytometry. Nodal metastases is of equal prognostic importance to clinical tumour stage and tumour regression grade (TRG) in OAC. The TME exhibited a greater immuno-suppressive phenotype than the LNME. Our data suggests that blockade of these checkpoints may have a therapeutic rationale for boosting response rates in OAC.

19.
Front Immunol ; 11: 1609, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793237

RESUMO

Tuberculosis (TB) is the leading infectious killer in the world. Mycobacterium tuberculosis (Mtb), the bacteria that causes the disease, is phagocytosed by alveolar macrophages (AM) and infiltrating monocyte-derived macrophages (MDM) in the lung. Infected macrophages then upregulate effector functions through epigenetic modifications to make DNA accessible for transcription. The metabolic switch to glycolysis and the production of proinflammatory cytokines are key effector functions, governed by epigenetic changes, that are integral to the ability of the macrophage to mount an effective immune response against Mtb. We hypothesised that suberanilohydroxamic acid (SAHA), an FDA-approved histone deacetylase inhibitor (HDACi), can modulate epigenetic changes upstream of the metabolic switch and support immune responses during Mtb infection. The rate of glycolysis in human MDM, infected with Mtb and treated with SAHA, was tracked in real time on the Seahorse XFe24 Analyzer. SAHA promoted glycolysis early in the response to Mtb. This was associated with significantly increased production of IL-1ß and significantly reduced IL-10 in human MDM and AM. Since innate immune function directs downstream adaptive immune responses, we used SAHA-treated Mtb-infected AM or MDM in a co-culture system to stimulate T cells. Mtb-infected macrophages that had previously been treated with SAHA promoted IFN-γ, GM-CSF, and TNF co-production in responding T helper cells but did not affect cytotoxic T cells. These results indicate that SAHA promoted the early switch to glycolysis, increased IL-1ß, and reduced IL-10 production in human macrophages infected with Mtb. Moreover, the elevated proinflammatory function of SAHA-treated macrophages resulted in enhanced T helper cell cytokine polyfunctionality. These data provide an in vitro proof-of-concept for the use of HDACi to modulate human immunometabolic processes in macrophages to promote innate and subsequent adaptive proinflammatory responses.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Interleucina-1beta/imunologia , Macrófagos/efeitos dos fármacos , Mycobacterium tuberculosis/fisiologia , Linfócitos T Auxiliares-Indutores/imunologia , Células Cultivadas , Citocinas/imunologia , Glicólise/efeitos dos fármacos , Humanos , Interleucina-10/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Vorinostat/farmacologia
20.
Cancers (Basel) ; 12(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202734

RESUMO

Esophageal adenocarcinoma (EAC) is an aggressive cancer with poor prognosis and incidence is increasing rapidly in the Western world. Multi-modal treatment has improved survival outcomes but only for a minority of patients. Currently no markers have been identified to predict treatment response. This study investigated the association between clinical outcomes and pre-treatment levels of 54 serum proteins in n = 80 patients with EAC. Low tumor regression grade (TRG), corresponding to a favorable treatment response, was linked to prolonged overall survival (OS). CCL4 was higher in patients with a favorable treatment response, while Tie2 and CRP were higher in poor responders. Elevated CCL22 and CCL26 was associated with improved OS, while elevated IL-10 showed a negative association. CCL3, CCL4, IL-1α and IL-12/IL23p40 were highest in individuals with no adverse features of tumor biology, whereas levels of Tie2 and VEGF were lowest in this cohort. CCL4 was also elevated in patients with high tumor lymphocyte infiltration. Comparison of matched pre- and post-treatment serum (n = 28) showed a large reduction in VEGFC, and a concomitant increase in other cytokines, including CCL4. These data link several serum markers with clinical outcomes, highlighting an important role for immune cell trafficking in the EAC antitumor immune response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA