RESUMO
Cardiometabolic disease is an increasing cause of morbidity and death in society. While M1-like macrophages contribute to metabolic inflammation and insulin resistance, those polarized to an M2-like phenotype exert protective properties. Building on our observations reporting M2-like macrophage exosomes in atherosclerosis control, we tested whether they could serve to control inflammation in the liver and adipose tissue of obese mice. In thinking of clinical translation, we studied human THP-1 macrophages exposed to interleukin (IL)-4 as a source of exosomes (THP1-IL4-exo). Our findings show that THP1-IL4-exo polarized primary macrophages to an anti-inflammatory phenotype and reprogramed their energy metabolism by increasing levels of microRNA-21/99a/146b/378a (miR-21/99a/146b/378a) while reducing miR-33. This increased lipophagy, mitochondrial activity, and oxidative phosphorylation (OXPHOS). THP1-IL4-exo exerted a similar regulation of these miRs in cultured 3T3-L1 adipocytes. This enhanced insulin-dependent glucose uptake through increased peroxisome proliferator activated receptor gamma (PPARγ)-driven expression of GLUT4. It also increased levels of UCP1 and OXPHOS activity, which promoted lipophagy, mitochondrial activity, and beiging of 3T3-L1 adipocytes. Intraperitoneal infusions of THP1-IL4-exo into obese wild-type and Ldlr-/- mice fed a Western high-fat diet reduced hematopoiesis and myelopoiesis, and favorably reprogramed inflammatory signaling and metabolism in circulating Ly6Chi monocytes. This also reduced leukocyte numbers and inflammatory activity in the circulation, aorta, adipose tissue, and the liver. Such treatments reduced hepatic steatosis and increased the beiging of white adipose tissue as revealed by increased UCP1 expression and OXPHOS activity that normalized blood insulin levels and improved glucose tolerance. Our findings support THP1-IL4-exo as a therapeutic approach to control cardiometabolic disease and diabetes in obesity.
Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Exossomos , Resistência à Insulina , Interleucina-4/metabolismo , MicroRNAs , Tecido Adiposo/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus/metabolismo , Dieta Hiperlipídica , Exossomos/metabolismo , Humanos , Inflamação/metabolismo , Insulina/metabolismo , Interleucina-4/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/terapiaRESUMO
In this paper, we study the drying of water-saturated porous polydimethylsiloxane (PDMS) elastomers with closed porosity in which the evaporation of water is possible only via the diffusion across PDMS. Starting from water/PDMS emulsions, we fabricate soft macroporous samples with different pore diameter distributions and average diameters ranging from 10 to 300 µm. In these materials, the drying may lead to either a collapsed state with low porosity or the cavitation and reopening of a fraction of the pores. Using optical microscopy and porosity measurements, we showed the influence of the pore diameters and interactions on the result of drying. At pore diameters lower than 30 µm, the majority of pores remain collapsed. We attribute the permanence of the collapse of most small pores to a low probability of cavitation and to the adhesion of the pore walls. Pores with diameters larger than 100 µm reopen via cavitation of the water they contain. The behavior of pores with diameters ranging from 30 to 100 µm depends on the porosity and drying temperature. We also visualize collective cavitation upon the drying of sponges initially saturated with sodium chloride solution. In this case, the cavitation in the largest pores leads to the reopening of small pores in a neighboring zone of the sample. To our knowledge, our results present the first experimental proof of the pore-size-dependent and cooperative nature of the response of soft sponges with closed porosity to drying.
RESUMO
Effective treatment strategies to alleviate heart failure that develops as a consequence of myocardial infarction (MI) remain an unmet need in cardiovascular medicine. In this study, we uncovered that exosomes produced by human THP-1 macrophages cultured with the cytokine IL-4 (THP1-IL4-exo), reverse cardiac functional decline in mice that develop MI as a consequence of diet-induced occlusive coronary atherosclerosis. Therapeutic benefits of THP1-IL4-exo stem from their ability to reprogram circulating Ly-6Chi monocytes into an M2-like phenotype and suppress Type 1 Interferon signaling in myeloid cells within the bone marrow, the circulation, and cardiac tissue. Collectively, these benefits suppress myelopoiesis, myeloid cell recruitment to cardiac tissue, and preserve populations of resident cardiac macrophages that together mitigate cardiac inflammation, adverse ventricular remodeling, and heart failure. Our findings introduce THP1-IL4-exo, one form of M2-macrophage exosomes, as novel therapeutics to preserve cardiac function subsequent to MI.
RESUMO
OBJECTIVE: To analyze the effectiveness of the current genetic testing guidelines for patients with thoracic aortic aneurysms. METHODS: We evaluated genetic tests for thoracic aortic disease (TAD) from 2012 to 2023 in patients aged 18 and older with a thoracic aorta diameter greater than 4 cm. Mutation rates were compared by American College of Cardiology/American Heart Association testing criteria met by patients: age younger than 60 years, syndromic features of connective tissue diseases (CTDs), family history, or none. Results were classified as pathogenic, variants of uncertain significance (VUS), or negative. Genes tested were analyzed in 2 categories: primary (strongly associated with heritable diseases) or secondary (less strongly associated). RESULTS: In total, 1034 patients were included: 42.4% aged younger than 60 years, 19.1% with syndromic features of CTD, 41.8% with family history, and 30.7% meeting no criteria. Overall, 3.97% had pathogenic mutations, and 27.27% had VUS. Mutation rates were greatest in patients with syndromic features of CTD (13.2%), followed by patients aged younger than 60 years (5.48%), with a family history (4.63%), and with no criteria met (2.21%). Primary genes had pathogenic mutation rates of 3.29% and VUS rates of 12.19%. Secondary genes had lower pathogenic rates (0.68%) but greater VUS (17.5%). Mutation rates in primary genes peaked at 22% in patients meeting all criteria, whereas those younger than 60 years without family history or syndromic features of CTD had the lowest rate (0.54%). CONCLUSIONS: Refining genetic testing guidelines to incorporate multiple patient criteria could enhance risk stratification and support informed decision-making in genetic testing for TAD. Limiting testing to genes strongly associated with TAD could lower VUS rates.
RESUMO
Small extracellular vesicles (sEVs) are cell-released vesicles ranging from 30-150nm in size. They have garnered increasing attention because of their potential for both the diagnosis and treatment of disease. The diversity of sEVs derives from their biological composition and cargo content. Currently, the isolation of sEV subpopulations is primarily based on bio-physical and affinity-based approaches. Since a standardized definition for sEV subpopulations is yet to be fully established, it is important to further investigate the correlation between the biomolecular composition of sEVs and their physical properties. In this study, we employed a platform combining single-vesicle surface-enhanced Raman spectroscopy (SERS) and machine learning to examine individual sEVs isolated by size-exclusion chromatography (SEC). The biomolecular composition of each vesicle examined was reflected by its corresponding SERS spectral features (biomolecular "fingerprints"), with their roots in the composition of their collective Raman-active bonds. Origins of the SERS spectral features were validated through a comparative analysis between SERS and mass spectrometry (MS). SERS fingerprinting of individual vesicles was effective in overcoming the challenges posed by EV population averaging, allowing for the possibility of analyzing the variations in biomolecular composition between the vesicles of similar and/or different sizes. Using this approach, we uncovered that each of the size-based fractions of sEVs contained particles with predominantly similar SERS spectral features. Indeed, more than 84% of the vesicles residing within a particular group were clearly distinguishable from that of the other EV sub-populations, despite some spectral variations within each sub-population. Our results suggest the possibility that size-based EV fractionation methods produce samples where similarly eluted sEVs are correlated with their respective biochemical contents, as reflected by their SERS spectra. Our findings therefore highlight the possibility that the biogenesis and respective biological functionalities of the various sEV fractions may be inherently different.
Assuntos
Vesículas Extracelulares , Análise Espectral Raman , Análise Espectral Raman/métodos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Cromatografia em Gel/métodos , Aprendizado de Máquina , Espectrometria de Massas/métodosRESUMO
The pleiotropic roles of nSMase2-generated ceramide include regulation of intracellular ceramide signaling and exosome biogenesis. We investigated the effects of eliminating nSMase2 on early and advanced PDA, including its influence on the microenvironment. Employing the KPC mouse model of pancreatic cancer, we demonstrate that pancreatic epithelial nSMase2 ablation reduces neoplasia and promotes a PDA subtype switch from aggressive basal-like to classical. nSMase2 elimination prolongs survival of KPC mice, hinders vasculature development, and fosters a robust immune response. nSMase2 loss leads to recruitment of cytotoxic T cells, N1-like neutrophils, and abundant infiltration of anti-tumorigenic macrophages in the pancreatic preneoplastic microenvironment. Mechanistically, we demonstrate that nSMase2-expressing PDA cell small extracellular vesicles (sEVs) reduce survival of KPC mice; PDA cell sEVs generated independently of nSMase2 prolong survival of KPC mice and reprogram macrophages to a proinflammatory phenotype. Collectively, our study highlights previously unappreciated opposing roles for exosomes, based on biogenesis pathway, during PDA progression.
RESUMO
While apolipoprotein E (apoE) expression by myeloid cells is recognized to control inflammation, whether such benefits can be communicated via extracellular vesicles is not known. Through the study of extracellular vesicles produced by macrophages derived from the bone marrow of Wildtype (WT-BMDM-EV) and ApoE deficient (EKO-BMDM-EV) mice, we uncovered a critical role for apoE expression in regulating their cell signaling properties. WT-BMDM-EV communicated anti-inflammatory properties to recipient myeloid cells by increasing cellular levels of apoE and miR-146a-5p, that reduced NF-κB signalling. They also downregulated cellular levels of miR-142a-3p, resulting in increased levels of its target carnitine palmitoyl transferase 1A (CPT1A) which improved fatty acid oxidation (FAO) and oxidative phosphorylation (OxPHOS) in recipient cells. Such favorable metabolic polarization enhanced cell-surface MerTK levels and the phagocytic uptake of apoptotic cells. In contrast, EKO-BMDM-EV exerted opposite effects by reducing cellular levels of apoE and miR-146a-5p, which increased NF-κB-driven GLUT1-mediated glucose uptake, aerobic glycolysis, and oxidative stress. Furthermore, EKO-BMDM-EV increased cellular miR-142a-3p levels, which reduced CPT1A levels and impaired FAO and OxPHOS in recipient myeloid cells. When cultured with naïve CD4+ T lymphocytes, EKO-BMDM-EV drove their activation and proliferation, and fostered their transition to a Th1 phenotype. While infusions of WT-BMDM-EV into hyperlipidemic mice resolved inflammation, infusions of EKO-BMDM-EV increased hematopoiesis and drove inflammatory responses in myeloid cells and T lymphocytes. ApoE-dependent immunometabolic signaling by macrophage extracellular vesicles was dependent on transcriptional axes controlled by miR-146a-5p and miR-142a-3p that could be reproduced by infusing miR-146a mimics & miR-142a antagonists into hyperlipidemic apoE-deficient mice. Together, our findings unveil a novel property for apoE expression in macrophages that modulates the immunometabolic regulatory properties of their secreted extracellular vesicles.
Assuntos
Vesículas Extracelulares , Hiperlipidemias , MicroRNAs , Animais , Camundongos , NF-kappa B , Transdução de Sinais , Macrófagos , Inflamação , Apolipoproteínas E/genéticaRESUMO
Apolipoprotein E (ApoE) is recognized for its pleiotropic properties that suppress inflammation. We report that ApoE serves as a metabolic rheostat that regulates microRNA control of glycolytic and mitochondrial activity in myeloid cells and hematopoietic stem and progenitor cells (HSPCs). ApoE expression in myeloid cells increases microRNA-146a, which reduces nuclear factor κB (NF-κB)-driven GLUT1 expression and glycolytic activity. In contrast, ApoE expression reduces microRNA-142a, which increases carnitine palmitoyltransferase 1a (CPT1A) expression, fatty acid oxidation, and oxidative phosphorylation. Improved mitochondrial metabolism by ApoE expression causes an enrichment of tricarboxylic acid (TCA) cycle metabolites and nicotinamide adenine dinucleotide (NAD+) in macrophages. The study of mice with conditional ApoE expression supports the capacity of ApoE to foster microRNA-controlled immunometabolism. Modulation of microRNA-146a and -142a in the hematopoietic system of hyperlipidemic mice using RNA mimics and antagonists, respectively, improves mitochondrial metabolism, which suppresses inflammation and hematopoiesis. Our findings unveil microRNA regulatory circuits, controlled by ApoE, that exert metabolic control over hematopoiesis and inflammation in hyperlipidemia.
Assuntos
Hiperlipidemias , Doenças Metabólicas , MicroRNAs , Camundongos , Animais , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Hematopoese , Apolipoproteínas E/genéticaRESUMO
OBJECTIVE: There are currently no specific biomarkers to identify patients with abdominal aortic aneurysms (AAAs). Circulating exosomes contain microRNAs (miRNA) that are potential biomarkers for the presence of disease. This study aimed to characterize the exosomal miRNA expression profile of patients with AAAs in order to identify novel biomarkers of disease. METHODS: Patients undergoing duplex ultrasound (US) or computed tomography (CT) for screening or surveillance of an AAA were screened to participate in the study. Cases with AAA were defined as having a max aortic diameter >3 cm. Circulating plasma exosomes were isolated using Cushioned-Density Gradient Ultracentrifugation and total RNA was extracted. Next Generation Sequencing was performed on the Illumina HiSeq4000 SE50. Differential miRNA expression analysis was performed using DESeq2 software with a Benjamini-Hochberg correction. MicroRNA expression profiles were validated by Quantitative Real-Time PCR. RESULTS: A total of 109 patients were screened to participate in the study. Eleven patients with AAA and 15 non-aneurysmal controls met study criteria and were enrolled. Ultrasound measured aortic diameter was significantly larger in the AAA group (mean maximum diameter 4.3 vs 2.0 cm, P = 6.45x10-6). More AAA patients had coronary artery disease (5/11 vs 1/15, P = 0.05) as compared to controls, but the groups did not differ significantly in the rates of peripheral arterial disease and chronic obstructive pulmonary disease. A total of 40 miRNAs were differentially expressed (P<0.05). Of these, 18 miRNAs were downregulated and 22 were upregulated in the AAA group compared to controls. After false discovery rate (FDR) adjustment, only miR-122-5p was expressed at significantly different levels in the AAA group compared to controls (fold change = 5.03 controls vs AAA; raw P = 1.8x10-5; FDR P = 0.02). CONCLUSION: Plasma exosomes from AAA patients have significantly reduced levels of miRNA-122-5p compared to controls. This is a novel exosome-associated miRNA that warrants further investigation to determine its use as a diagnostic biomarker and potential implications in AAA pathogenesis.
Assuntos
Aneurisma da Aorta Abdominal , Exossomos , MicroRNAs , Humanos , Exossomos/metabolismo , MicroRNAs/metabolismo , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Biomarcadores , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Exosomes are small extracellular vesicles (sEVs) of ~30-150 nm in diameter that have the same topology as the cell, are enriched in selected exosome cargo proteins, and play important roles in health and disease. To address large unanswered questions regarding exosome biology in vivo, we created the exomap1 transgenic mouse model. In response to Cre recombinase, exomap1 mice express HsCD81mNG, a fusion protein between human CD81, the most highly enriched exosome protein yet described, and the bright green fluorescent protein mNeonGreen. As expected, cell type-specific expression of Cre induced the cell type-specific expression of HsCD81mNG in diverse cell types, correctly localized HsCD81mNG to the plasma membrane, and selectively loaded HsCD81mNG into secreted vesicles that have the size (~80 nm), topology (outside out), and content (presence of mouse exosome markers) of exosomes. Furthermore, mouse cells expressing HsCD81mNG released HsCD81mNG-marked exosomes into blood and other biofluids. Using high-resolution, single-exosome analysis by quantitative single molecule localization microscopy, we show here that that hepatocytes contribute ~15% of the blood exosome population whereas neurons contribute <1% of blood exosomes. These estimates of cell type-specific contributions to blood EV population are consistent with the porosity of liver sinusoidal endothelial cells to particles of ~50-300 nm in diameter, as well as with the impermeability of blood-brain and blood-neuron barriers to particles >5 nm in size. Taken together, these results establish the exomap1 mouse as a useful tool for in vivo studies of exosome biology, and for mapping cell type-specific contributions to biofluid exosome populations. In addition, our data confirm that CD81 is a highly-specific marker for exosomes and is not enriched in the larger microvesicle class of EVs.
RESUMO
Exosomes are small extracellular vesicles (sEVs) of ~30-150 nm in diameter that are enriched in exosome marker proteins and play important roles in health and disease. To address large unanswered questions regarding exosome biology in vivo, we created the Exomap1 transgenic mouse, which in response to Cre recombinase expresses the most highly enriched exosomal marker protein known, human CD81, fused to mNeonGreen (HsCD81mNG), and prior to Cre expresses a mitochondrial red fluorescent protein. Validation of the exomap1 mouse with eight distinct Cre drivers demonstrated that HsCD81mNG was expressed only in response to Cre, that murine cells correctly localized HsCD81mNG to the plasma membrane, and that this led to the secretion of HsCD81mNG in EVs that had the size (~70-80 nm), topology, and composition of exosomes. Furthermore, cell type-specific activation of the exomap1 transgene allowed us to use quantitative single molecule localization microscopy to calculate the cell type-specific contribution to biofluid exosome populations. Specifically, we show that neurons contribute ~1% to plasma and cerebrospinal fluid exosome populations whereas hepatocytes contribute ~15% to plasma exosome populations, numbers that reflect the known vascular permeabilities of brain and liver. These observations validate the use of Exomap1 mouse models for in vivo studies of exosome biology.
RESUMO
We investigated whether extracellular vesicles (EVs) produced under hyperglycemic conditions could communicate signaling to drive atherosclerosis. We did so by treating Apoe-/- mice with exosomes produced by bone marrow-derived macrophages (BMDM) exposed to high glucose (BMDM-HG-exo) or control. Infusions of BMDM-HG-exo increased hematopoiesis, circulating myeloid cell numbers, and atherosclerotic lesions with an accumulation of macrophage foam and apoptotic cells. Transcriptome-wide analysis of cultured macrophages treated with BMDM-HG-exo or plasma EVs isolated from subjects with type II diabetes revealed a reduced inflammatory state and increased metabolic activity. Furthermore, BMDM-HG-exo induced cell proliferation and reprogrammed energy metabolism by increasing glycolytic activity. Lastly, profiling microRNA in BMDM-HG-exo and plasma EVs from diabetic subjects with advanced atherosclerosis converged on miR-486-5p as commonly enriched and recognized in dysregulated hematopoiesis and Abca1 control. Together, our findings show that EVs serve to communicate detrimental properties of hyperglycemia to accelerate atherosclerosis in diabetes.
RESUMO
The intestinal microbiota influences mammalian host physiology in health and disease locally in the gut but also in organs devoid of direct contact with bacteria such as the liver and brain. Extracellular vesicles (EVs) or outer membrane vesicles (OMVs) released by microbes are increasingly recognized for their potential role as biological shuttle systems for inter-kingdom communication. However, physiologically relevant evidence for the transfer of functional biomolecules from the intestinal microbiota to individual host cells by OMVs in vivo is scarce. By introducing Escherichia coli engineered to express Cre-recombinase (E. coliCre ) into mice with a Rosa26.tdTomato-reporter background, we leveraged the Cre-LoxP system to report the transfer of bacterial OMVs to recipient cells in vivo. Colonizing the intestine of these mice with E. coliCre , resulted in Cre-recombinase induced fluorescent reporter gene-expression in cells along the intestinal epithelium, including intestinal stem cells as well as mucosal immune cells such as macrophages. Furthermore, even far beyond the gut, bacterial-derived Cre induced extended marker gene expression in a wide range of host tissues, including the heart, liver, kidney, spleen, and brain. Together, our findings provide a method and proof of principle that OMVs can serve as a biological shuttle system for the horizontal transfer of functional biomolecules between bacteria and mammalian host cells.
Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/genética , Animais , CamundongosRESUMO
Developing strategies that promote the resolution of vascular inflammation and atherosclerosis remains a major therapeutic challenge. Here, we show that exosomes produced by naive bone marrow-derived macrophages (BMDM-exo) contain anti-inflammatory microRNA-99a/146b/378a that are further increased in exosomes produced by BMDM polarized with IL-4 (BMDM-IL-4-exo). These exosomal microRNAs suppress inflammation by targeting NF-κB and TNF-α signaling and foster M2 polarization in recipient macrophages. Repeated infusions of BMDM-IL-4-exo into Apoe-/- mice fed a Western diet reduce excessive hematopoiesis in the bone marrow and thereby the number of myeloid cells in the circulation and macrophages in aortic root lesions. This also leads to a reduction in necrotic lesion areas that collectively stabilize atheroma. Thus, BMDM-IL-4-exo may represent a useful therapeutic approach for atherosclerosis and other inflammatory disorders by targeting NF-κB and TNF-α via microRNA cargo delivery.