Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 63, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528526

RESUMO

Efficient predictive biomarkers are needed for immune checkpoint inhibitor (ICI)-based immunotherapy in non-small cell lung cancer (NSCLC). Testing the predictive value of single nucleotide polymorphisms (SNPs) in programmed cell death 1 (PD-1) or its ligand 1 (PD-L1) has shown contrasting results. Here, we aim to validate the predictive value of PD-L1 SNPs in advanced NSCLC patients treated with ICIs as well as to define the molecular mechanisms underlying the role of the identified SNP candidate. rs822336 efficiently predicted response to anti-PD-1/PD-L1 immunotherapy in advanced non-oncogene addicted NSCLC patients as compared to rs2282055 and rs4143815. rs822336 mapped to the promoter/enhancer region of PD-L1, differentially affecting the induction of PD-L1 expression in human NSCLC cell lines as well as their susceptibility to HLA class I antigen matched PBMCs incubated with anti-PD-1 monoclonal antibody nivolumab. The induction of PD-L1 expression by rs822336 was mediated by a competitive allele-specificity binding of two identified transcription factors: C/EBPß and NFIC. As a result, silencing of C/EBPß and NFIC differentially regulated the induction of PD-L1 expression in human NSCLC cell lines carrying different rs822336 genotypes. Analysis by binding microarray further validated the competitive allele-specificity binding of C/EBPß and NFIC to PD-L1 promoter/enhancer region based on rs822336 genotype in human NSCLC cell lines. These findings have high clinical relevance since identify rs822336 and induction of PD-L1 expression as novel biomarkers for predicting anti-PD-1/PD-L1-based immunotherapy in advanced NSCLC patients.


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição NFI/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico
2.
Biotechnol Lett ; 44(11): 1313-1322, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36161539

RESUMO

OBJECTIVES: The aim of the present work was to identify a time-saving, effective, and low-cost strategy to produce in Escherichia coli a protein chimera representing a fusion anti-SARS-CoV-2 candidate vaccine, consisting of immunogenic and antigenic moieties. RESULTS: We overexpressed in E. coli BL21(DE3) a synthetic gene coding for CRM197-RBD, and the target protein was detected in inclusion bodies. CRM197-RBD was solubilized with 1 % (w/v) of the anionic detergent N-lauroylsarcosine (sarkosyl), the removal of which from the protein solution was conveniently accomplished with Amberlite XAD-4. The detergent-free CRM197-RBD was then separated from contaminating DNA using polyethylenimine (PEI), and finally purified from PEI by salting out with ammonium sulfate. Structural (CD spectrum) and functional (DNase activity) assays revealed that the CRM197-RBD chimera featured a native and active conformation. Remarkably, we determined a yield of purified CRM197-RBD equal to 23 mg per litre of culture. CONCLUSIONS: To produce CRM197-RBD, we devised the use of sarkosyl as an alternative to urea to solubilize the target protein from E. coli inclusion bodies, and the easy removal of sarkosyl by means of Amberlite XAD-4.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/biossíntese , Escherichia coli , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232690

RESUMO

Human nucleolin (hNcl) is a multifunctional protein involved in the progression of various cancers and plays a key role in other pathologies. Therefore, there is still unsatisfied demand for hNcl modulators. Recently, we demonstrated that the plant ent-kaurane diterpene oridonin inhibits hNcl but, unfortunately, this compound is quite toxic for healthy cells. Trachylobane diterpene 6,19-dihydroxy-ent-trachiloban-17-oic acid (compound 12) extracted from Psiadia punctulata (DC.) Vatke (Asteraceae) emerged as a ligand of hNcl from a cellular thermal shift assay (CETSA)-based screening of a small library of diterpenes. Effective interaction between this compound and the protein was demonstrated to occur both in vitro and inside two different types of cancer cells. Based on the experimental and computational data, a model of the hNcl/compound 12 complex was built. Because of this binding, hNcl mRNA chaperone activity was significantly reduced, and the level of phosphorylation of the protein was affected. At the biological level, cancer cell incubation with compound 12 produced a cell cycle block in the subG0/G1 phase and induced early apoptosis, whereas no cytotoxicity towards healthy cells was observed. Overall, these results suggested that 6,19-dihydroxy-ent-trachiloban-17-oic could represent a selective antitumoral agent and a promising lead for designing innovative hNcl inhibitors also usable for therapeutic purposes.


Assuntos
Asteraceae , Diterpenos do Tipo Caurano , Diterpenos , Neoplasias , Asteraceae/química , Diterpenos/química , Diterpenos/farmacologia , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/farmacologia , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Fosfoproteínas , Fosforilação , RNA Mensageiro , Proteínas de Ligação a RNA , Nucleolina
4.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805133

RESUMO

In recent decades, intensive crop management has involved excessive use of pesticides or fertilizers, compromising environmental integrity and public health. Accordingly, there has been worldwide pressure to find an eco-friendly and safe strategy to ensure agricultural productivity. Among alternative approaches, Plant Growth-Promoting (PGP) rhizobacteria are receiving increasing attention as suitable biocontrol agents against agricultural pests. In the present study, 22 spore-forming bacteria were selected among a salt-pan rhizobacteria collection for their PGP traits and their antagonistic activity against the plant pathogen fungus Macrophomina phaseolina. Based on the higher antifungal activity, strain RHFS10, identified as Bacillus vallismortis, was further examined and cell-free supernatant assays, column purification, and tandem mass spectrometry were employed to purify and preliminarily identify the antifungal metabolites. Interestingly, the minimum inhibitory concentration assessed for the fractions active against M. phaseolina was 10 times lower and more stable than the one estimated for the commercial fungicide pentachloronitrobenzene. These results suggest the use of B. vallismortis strain RHFS10 as a potential plant growth-promoting rhizobacteria as an alternative to chemical pesticides to efficiently control the phytopathogenic fungus M. phaseolina.


Assuntos
Ascomicetos/patogenicidade , Bacillus/fisiologia , Agentes de Controle Biológico , Doenças das Plantas/microbiologia , Rizosfera , Antibiose , Antifúngicos/farmacologia , Bacillus/classificação , Biofilmes , Hidrólise , Peso Molecular , Filogenia , Desenvolvimento Vegetal , RNA Ribossômico 16S/genética , Sequenciamento Completo do Genoma
5.
Biochem Biophys Res Commun ; 529(4): 869-875, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32819591

RESUMO

Deinococcus radiodurans is a Gram positive bacterium the capability of which to withstand high doses of ionizing radiations is well known. Physiologically speaking, D. radiodurans is a proteolytic prokaryote able to express and secrete quite a number of proteases, and to use amino acids as an energy source. When considering this, it is surprising that little information is available on the biochemical components responsible for the uptake of peptides in D. radiodurans. Here we report on the purification and characterization of an ABC peptide transporter, isolated from D. radiodurans cells grown in tryptone-glucose-yeast extract (TGY) medium. In particular, we show here that the action of this transporter (denoted DR1571, SwissProt data bank accession number Q9RU24 UF71_DEIRA) is exerted on peptides containing at least 3 amino acids. Further, using tetra-peptides as model systems, we were able to observe that the DR1571 protein does not bind to peptides containing phenylalanine or valine, but associates with high efficiency to tetra-glycine, and with moderate affinity to tetra-peptides containing arginine or aspartate.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Deinococcus/enzimologia , Oligopeptídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Deinococcus/genética , Ensaios Enzimáticos , Expressão Gênica , Cinética , Peso Molecular , Oligopeptídeos/química , Ligação Proteica , Especificidade por Substrato
6.
Int J Mol Sci ; 20(9)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31072046

RESUMO

Chronic kidney disease (CKD) is characterized by an oxidative stress status, driving some CKD-associated complications, even at the gastrointestinal level. Indoxyl Sulfate (IS) is a protein-bound uremic toxin, poorly eliminated by dialysis. This toxin is able to affect the intestinal system, but its molecular mechanism/s in intestinal epithelial cells (IECs) remain poorly understood. This study's aim was to evaluate the effect of IS (31.2-250 µM) on oxidative stress in IEC-6 cells and on the intactness of IECs monolayers. Our results indicated that IS enhanced oxidative cell damage by inducing reactive oxygen species (ROS) release, reducing the antioxidant response and affecting Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation as well its related antioxidant enzymes. In the wound healing assay model, IS reduced IEC-6 migration, slightly impaired actin cytoskeleton rearrangement; this effect was associated with connexin 43 alteration. Moreover, we reported the effect of CKD patients' sera in IEC-6 cells. Our results indicated that patient sera induced ROS release in IEC-6 cells directly related to IS sera content and this effect was reduced by AST-120 serum treatment. Results highlighted the effect of IS in inducing oxidative stress in IECs and in impairing the intactness of the IECs cell monolayer, thus significantly contributing to CKD-associated intestinal alterations.


Assuntos
Antioxidantes/farmacologia , Indicã/farmacologia , Intestinos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Insuficiência Renal Crônica/tratamento farmacológico , Animais , Carbono/farmacologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Conexina 43/genética , Células Epiteliais/efeitos dos fármacos , Humanos , Intestinos/patologia , Fator 2 Relacionado a NF-E2/genética , Óxidos/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Uremia/tratamento farmacológico , Uremia/metabolismo , Uremia/patologia
7.
Biochim Biophys Acta ; 1840(3): 1135-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24321480

RESUMO

BACKGROUND: The semi-synthetic ent-kaurane 15-ketoatractyligenin methyl ester (SC2017) has been previously reported to possess high antiproliferative activity against several solid tumor-derived cell lines. Our study was aimed at investigating SC2017 tumor growth-inhibiting activity and the underlying mechanisms in Jurkat cells (T-cell leukemia) and xenograft tumor models. METHODS: Cell viability was evaluated by MTT assay. Cell cycle progression, reactive oxygen species (ROS) elevation and apoptotic hallmarks were monitored by flow cytometry. Inhibition of thioredoxin reductase (TrxR) by biochemical assays. Levels and/or activation status of signaling proteins were assessed by western blotting. Xenograft tumors were generated with HCT 116 colon carcinoma cells. RESULTS: SC2017 displayed cell growth-inhibiting activity against Jurkat cells (half maximal inhibitory concentration values (IC50)<2µM), but low cell-killing potential in human peripheral blood mononuclear cells (PBMC). The primary response of Jurkat cells to SC2017 was an arrest in G2 phase followed by caspase-dependent apoptosis. Inhibition of PI3K/Akt pathway and TrxR activity by SC2017 was demonstrated by biochemical and pharmacological approaches. At least, SC2017 was found to inhibit xenograft tumor growth. CONCLUSIONS: Our results demonstrate that SC2017 inhibits tumor cell growth in in vitro and in vivo models, but displays moderate toxicity against PBMC. We also demonstrate that SC2017 promotes caspase-dependent apoptosis in Jurkat cells by affecting Akt activation status and TrxR functionality. GENERAL SIGNIFICANCE: Our observations suggest the semi-synthetic ent-kaurane SC2017 as a promising chemotherapeutic compound. SC2017 has, indeed, shown to possess tumor growth inhibiting activity and be able to counteract PI3K/Akt and Trx system survival signaling.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Atractilosídeo/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Diterpenos do Tipo Caurano/farmacologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Tiorredoxinas/fisiologia , Animais , Atractilosídeo/farmacologia , Caspases/fisiologia , Citocromos c/metabolismo , Humanos , Camundongos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Sci Rep ; 12(1): 8401, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624181

RESUMO

An extensive proteomic analysis was performed on a set of 12 bones of human victims of the eruption that in AD 79 rapidly buried Pompeii and Herculaneum, allowing the detection of molecular signatures imprinted in the surviving protein components. Bone collagen survived the heat of the eruption, bearing a piece of individual biological history encoded in chemical modifications. Here we show that the human bone proteomes from Pompeii are more degraded than those from the inhabitants of Herculaneum, despite the latter were exposed to temperatures much higher than those experienced in Pompeii. The analysis of the specimens from Pompeii shows lower content of non-collagenous proteins, higher deamidation level and higher extent of collagen modification. In Pompeii, the slow decomposition of victims' soft tissues in the natural dry-wet hydrogeological soil cycles damaged their bone proteome more than what was experienced at Herculaneum by the rapid vanishing of body tissues from intense heat, under the environmental condition of a permanent waterlogged burial context. Results herein presented are the first proteomic analyses of bones exposed to eruptive conditions, but also delivered encouraging results for potential biomarkers that might also impact future development of forensic bone proteomics.


Assuntos
Proteômica , Erupções Vulcânicas , Osso e Ossos , Temperatura Alta , Humanos , Proteoma
9.
Mol Divers ; 15(2): 401-16, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21197572

RESUMO

Histone acetyltransferases (HATs) are a class of epigenetic enzymes crucial for chromatin restructuring and transcriptional regulation in eukaryotic cells, thus being a promising target for therapeutic development. Nonetheless, differently from histone deacetylases (HDACs) inhibitors, there is still paucity of small-molecule modulators of HAT activity. After a decline during past decade, natural products and their derivatives could be once again a valuable tool in the lead discovery process and meet such need of Novel Chemical Entities (NCEs). In this review, we will provide a comprehensive summary on the discovery of small-molecule HAT modulators from naturally occurring molecular scaffolds.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Alcaloides/química , Alcaloides/metabolismo , Ácidos Anacárdicos/química , Ácidos Anacárdicos/metabolismo , Animais , Benzofenonas/química , Benzofenonas/metabolismo , Benzoquinonas/química , Benzoquinonas/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Humanos , Peptídeos/química , Peptídeos/metabolismo , Fenóis/química , Fenóis/metabolismo , Polifenóis
10.
Biomol NMR Assign ; 15(2): 235-241, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33755914

RESUMO

As part of an International consortium aiming at the characterization by NMR of the proteins of the SARS-CoV-2 virus, we have obtained the virtually complete assignment of the backbone atoms of the non-structural protein nsp9. This small (12 kDa) protein is encoded by ORF1a, binds to RNA and seems to be essential for viral RNA synthesis. The crystal structures of the SARS-CoV-2 protein and other homologues suggest that the protein is dimeric as also confirmed by analytical ultracentrifugation and dynamic light scattering. Our data constitute the prerequisite for further NMR-based characterization, and provide the starting point for the identification of small molecule lead compounds that could interfere with RNA binding and prevent viral replication.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas de Ligação a RNA/química , Proteínas não Estruturais Virais/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Secundária de Proteína
11.
Biochim Biophys Acta ; 1794(11): 1606-15, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19635595

RESUMO

The C-terminal region of the proofreading subunit (epsilon) of Escherichia coli DNA polymerase III is shown here to be labile and to contain the residues (identified between F187 and R213) responsible for association with the polymerase subunit (alpha). We also identify two alpha-helices of the polymerase subunit (comprising the residues E311-M335 and G339-D353, respectively) as the determinants of binding to epsilon. The C-terminal region of epsilon is degraded by the ClpP protease assisted by the GroL molecular chaperone, while other factors control the overall concentration in vivo of epsilon. Among these factors, the chaperone DnaK is of primary importance for preserving the integrity of epsilon. Remarkably, inactivation of DnaK confers to Escherichia coli inviable phenotype at 42 degrees C, and viability can be restored over-expressing epsilon. Altogether, our observations indicate that the association between epsilon and alpha subunits of DNA polymerase III depends on small portions of both proteins, the association of which is controlled by proteolysis of epsilon. Accordingly, the factors catalysing (ClpP, GroL) or preventing (DnaK) this proteolysis exert a crucial checkpoint of the assembly of Escherichia coli DNA polymerase III core.


Assuntos
DNA Polimerase III/metabolismo , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Domínio Catalítico/genética , DNA Polimerase III/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Hidrólise
12.
Lab Invest ; 88(9): 995-1007, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18521065

RESUMO

Proliferating cell nuclear antigen (PCNA) is a 36 kDa protein involved in several cellular mechanisms, including DNA synthesis and repair, cell cycle regulation and apoptosis. An alteration in PCNA structure might contribute to DNA-damage accumulation in cancer cells. This study was aimed to evaluate the PCNA pattern of expression, in terms of aggregation status, isoforms and post-translational modifications, in human hepatocellular carcinoma (HCC) and cirrhosis as well as in HCC cell lines. Twelve HCCs and surrounding cirrhotic tissues were analysed, along with HepG2, Hep3B and SNU-398 cell lines. Normal liver specimens and cirrhosis without HCC were included as controls. Both DNA-bound and DNA-unbound PCNA fractions were analysed, and PCNA pattern of expression was displayed on two-dimensional gel electrophoresis followed by western blot. Results were confirmed by mass spectrometry. To compare HCCs vs surrounding tissues, immunolabelling and immunostaining were performed. In 6 of 12 HCCs and in cell lines, we found three major PCNA acidic forms, corresponding to monomers, probably dimers and trimers, and a basic isoform. In the six remaining HCCs, only a PCNA acidic form associated with multiple basic isoforms was detected. Importantly, the PCNA basic form was not found in cirrhotic tissues. To clarify the nature of the detected PCNA isoforms, ubiquitin-specific immunoblotting as well as phosphatase treatment were employed. A PCNA-ubiquitylated form in cell lines and PCNA-phosphorylated isoforms in 6 of 12 HCCs were detected. Finally, in the DNA-bound fraction we detected only an acidic PCNA monomeric form. We conclude that human hepatocellular carcinoma expresses specific PCNA isoforms compared to those found in cirrhosis, implicating a role for PCNA functional alterations in hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Fosforilação , Espectrometria de Massas por Ionização por Electrospray
13.
J Food Prot ; 81(2): 316-324, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29369691

RESUMO

Polychlorinated biphenyls (PCBs) are environmental pollutants of industrial origin that can contaminate food, mainly food of animal origin. Although production of PCBs has been banned in many countries since the 1980s, they are still present in the environment and are considered dangerous pollutants for human health. In fact, they can bioaccumulate in living organisms such as marine organisms because of their chemical and physical properties. New analytical approaches are useful to monitor the presence of such contaminants in seafood products and in the environment. In this work, we evaluate changes in protein expression of Mytilus galloprovincialis (Lam.) experimentally exposed to a PCB mixture and identify chemically specific protein expression signatures by using a proteomic approach. In particular, we identify 21 proteins whose levels of expression are sensibly modified after 3 weeks of exposure. The present work shows that a proteomic approach can be a useful tool to study alterations of protein expression in mussels exposed to PCBs and represents a first step toward the development of screening protocols to be used for biomonitoring surveys of fishery products.


Assuntos
Mytilus/metabolismo , Bifenilos Policlorados/metabolismo , Animais , Bifenilos Policlorados/análise , Proteômica
14.
Protein J ; 36(6): 453-460, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28932939

RESUMO

A structural and kinetic characterization of a fragment of the HoLaMa DNA polymerase is presented here. In particular, a truncated form of HoLaMa, devoid of a consistent portion of the thumb domain, was isolated and purified. This HoLaMa fragment, denoted as ΔNter-HoLaMa, is surprisingly competent in catalyzing DNA extension, albeit featuring a kcat one order of magnitude lower than the corresponding kinetic constant of its full-length counterpart. The conformational rearrangements, if any, of enzyme tryptophanes triggered by DNA binding or extension were assayed under pre-steady-state conditions. The fluorescence of HoLaMa tryptophanes was found to significantly change upon DNA binding and extension. On the contrary, no fluorescence changes of ΔNter-HoLaMa tryptophanes were detected under the same conditions, suggesting that major conformational transitions are not required for DNA binding or extension by this truncated DNA polymerase.


Assuntos
Domínio Catalítico , DNA Polimerase I , Domínio Catalítico/genética , Domínio Catalítico/fisiologia , DNA Polimerase I/química , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , Exonucleases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Sci Rep ; 7: 41273, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117438

RESUMO

Proteomics based approaches are emerging as useful tools to identify the targets of bioactive compounds and elucidate their molecular mechanisms of action. Here, we applied a chemical proteomic strategy to identify the peroxisome proliferator-activated receptor γ (PPARγ) as a molecular target of the pro-apoptotic agent 15-ketoatractyligenin methyl ester (compound 1). We demonstrated that compound 1 interacts with PPARγ, forms a covalent bond with the thiol group of C285 and occupies the sub-pocket between helix H3 and the ß-sheet of the ligand-binding domain (LBD) of the receptor by Surface Plasmon Resonance (SPR), mass spectrometry-based studies and docking experiments. 1 displayed partial agonism of PPARγ in cell-based transactivation assays and was found to inhibit the AKT pathway, as well as its downstream targets. Consistently, a selective PPARγ antagonist (GW9662) greatly reduced the anti-proliferative and pro-apoptotic effects of 1, providing the molecular basis of its action. Collectively, we identified 1 as a novel PPARγ partial agonist and elucidated its mode of action, paving the way for therapeutic strategies aimed at tailoring novel PPARγ ligands with reduced undesired harmful side effects.


Assuntos
Diterpenos do Tipo Caurano/farmacologia , Ésteres/farmacologia , PPAR gama/agonistas , Proteômica/métodos , Apoptose/efeitos dos fármacos , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Ésteres/química , Células HEK293 , Células HT29 , Humanos , Células Jurkat , Cinética , Ligantes , Simulação de Acoplamento Molecular , Estabilidade Proteica , Reprodutibilidade dos Testes , Rosiglitazona , Ressonância de Plasmônio de Superfície , Termodinâmica , Tiazolidinedionas/farmacologia , Fatores de Tempo , Ativação Transcricional/efeitos dos fármacos
17.
Sci Rep ; 7(1): 14453, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089569

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) has received significant attention as a key regulator of glucose and lipid homeostasis. In this study, we synthesized and tested a library of novel 5-benzylidene-thiazolidin-2,4-dione (BTZD) derivatives bearing a substituent on nitrogen of TZD nucleus (compounds 1a-1k, 2i-10i, 3a, 6a, and 8a-10a). Three compounds (1a, 1i, and 3a) exhibited selectivity towards PPARγ and were found to be weak to moderate partial agonists. Surface Plasmon Resonance (SPR) results demonstrated binding affinity of 1a, 1i and 3a towards PPARγ. Furthermore, docking experiments revealed that BTZDs interact with PPARγ through a distinct binding mode, forming primarily hydrophobic contacts with the ligand-binding pocket (LBD) without direct H-bonding interactions to key residues in H12 that are characteristic of full agonists. In addition, 1a, 1i and 3a significantly improved hyperglycemia and hyperlipidaemia in streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats at a dose of 36 mg/kg/day administered orally for 15 days. Histopathological investigations revealed that microscopic architecture of pancreatic and hepatic cells improved in BTZDs-treated diabetic rats. These findings suggested that 1a, 1i and 3a are very promising pharmacological agents by selectively targeting PPARγ for further development in the clinical treatment of type 2 diabetes mellitus.


Assuntos
Compostos de Benzilideno/farmacologia , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Glucose/metabolismo , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Masculino , Modelos Moleculares , Simulação de Acoplamento Molecular , PPAR gama/agonistas , Conformação Proteica , Ratos , Ratos Wistar , Tiazolidinedionas/farmacologia
19.
Protein Sci ; 11(9): 2102-12, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12192066

RESUMO

We recently reported a new class of inhibitors of the chymotrypsin-like serine protease NS3 of the hepatitis C virus. These inhibitors exploit the binding potential of the S' site of the protease, which is not generally used by the natural substrates. The effect of prime-site occupancy was analyzed by circular dichroism spectroscopy and limited proteolysis-mass spectrometry. Generally, nonprime inhibitors cause a structural change in NS3. Binding in the S' site produces additional conformational changes with different binding modes, even in the case of the NS3/4A cofactor complex. Notably, inhibitor binding either in the S or S' site also has profound effects on the stabilization of the protease. In addition, the stabilization propagates to regions not in direct contact with the inhibitor. In particular, the N-terminal region, which according to structural studies is endowed with low structural stability and is not stabilized by nonprime inhibitors, was now fully protected from proteolytic degradation. From the perspective of drug design, P-P' inhibitors take advantage of binding pockets, which are not exploited by the natural HCV substrates; hence, they are an entry point for a novel class of NS3/4A inhibitors. Here we show that binding of each inhibitor is associated with a specific structural rearrangement. The development of a range of inhibitors belonging to different classes and an understanding of their interactions with the protease are required to address the issue of the most likely outcome of viral protease inhibitor therapy, that is, viral resistance.


Assuntos
Peptídeos/metabolismo , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Espectrometria de Massas , Peptídeos/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas não Estruturais Virais/antagonistas & inibidores
20.
J Mass Spectrom ; 37(5): 481-8, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12112753

RESUMO

The use of electrospray Ionization (ESI) tandem mass spectrometry (MS/MS) for the structural determination of the lipid A components of the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125 is reported. The lipid A contains the classical bisphosphorylated beta-(1' --> 6)-linked D-glucosamine disaccharide with 3-hydroxydodecanoyl residues (12 : 0 (3-OH)) linked both as esters and amides to 2', 3' (distal glucosamine) and 2, 3 positions (proximal glucosamine) of the sugar backbone. The hydroxyl of 12 : 0 (3-OH) fatty acid linked at the 3' position is esterified by a dodecanoyl residue (12 : 0). In addition to the pentaacyl component, a minor tetraacyl lipid A, lacking the acyl residue at position 3, was also found in the lipid A fraction. The advantage of this MS technique for the investigation of the intra-ring fragmentation, which is useful for the determination of fatty acyl residue distribution on each glucosamine unit, is emphasized.


Assuntos
Ácidos Graxos/análise , Bactérias Gram-Negativas/química , Lipídeo A/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Glucosamina/análise , Lipídeo A/isolamento & purificação , Lipopolissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA