Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(14): 5229-34, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22431623

RESUMO

CRM197 is an enzymatically inactive and nontoxic form of diphtheria toxin that contains a single amino acid substitution (G52E). Being naturally nontoxic, CRM197 is an ideal carrier protein for conjugate vaccines against encapsulated bacteria and is currently used to vaccinate children globally against Haemophilus influenzae, pneumococcus, and meningococcus. To understand the molecular basis for lack of toxicity in CRM197, we determined the crystal structures of the full-length nucleotide-free CRM197 and of CRM197 in complex with the NAD hydrolysis product nicotinamide (NCA), both at 2.0-Å resolution. The structures show for the first time that the overall fold of CRM197 and DT are nearly identical and that the striking functional difference between the two proteins can be explained by a flexible active-site loop that covers the NAD binding pocket. We present the molecular basis for the increased flexibility of the active-site loop in CRM197 as unveiled by molecular dynamics simulations. These structural insights, combined with surface plasmon resonance, NAD hydrolysis, and differential scanning fluorimetry data, contribute to a comprehensive characterization of the vaccine carrier protein, CRM197.


Assuntos
Proteínas de Bactérias/toxicidade , Mutação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , NAD/metabolismo , Conformação Proteica
2.
FASEB J ; 27(12): 4723-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23964075

RESUMO

NarE is an arginine-specific mono-ADP-ribosyltransferase identified in Neisseria meningitidis that requires the presence of iron in a structured cluster for its enzymatic activities. In this study, we show that NarE can perform auto-ADP-ribosylation. This automodification occurred in a time- and NAD-concentration-dependent manner; was inhibited by novobiocin, an ADP-ribosyltransferase inhibitor; and did not occur when NarE was heat inactivated. No reduction in incorporation was evidenced in the presence of high concentrations of ATP, GTP, ADP-ribose, or nicotinamide, which inhibits NAD-glycohydrolase, impeding the formation of free ADP-ribose. Based on the electrophoretic profile of NarE on auto-ADP-ribosylation and on the results of mutagenesis and mass spectrometry analysis, the auto-ADP-ribosylation appeared to be restricted to the addition of a single ADP-ribose. Chemical stability experiments showed that the ADP-ribosyl linkage was sensitive to hydroxylamine, which breaks ADP-ribose-arginine bonds. Site-directed mutagenesis suggested that the auto-ADP-ribosylation site occurred preferentially on the R(7) residue, which is located in the region I of the ADP-ribosyltransferase family. After auto-ADP-ribosylation, NarE showed a reduction in ADP-ribosyltransferase activity, while NAD-glycohydrolase activity was increased. Overall, our findings provide evidence for a novel intramolecular mechanism used by NarE to regulate its enzymatic activities.


Assuntos
ADP Ribose Transferases/metabolismo , Adenosina Difosfato Ribose/metabolismo , Domínio Catalítico , Neisseria meningitidis/enzimologia , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Dados de Sequência Molecular , Mutação , NAD+ Nucleosidase/metabolismo , Estabilidade Proteica
3.
Innate Immun ; 21(3): 314-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25128692

RESUMO

LL-37 is a cationic peptide belonging to the cathelicidin family that has antimicrobial and immune-modulatory properties. Here we show that the mammalian mono-ADP-ribosyltransferase-1 (ART1), which selectively transfers the ADP-ribose moiety from NAD to arginine residues, ADP-ribosylates LL-37 in vitro. The incorporation of ADP-ribose was first observed by Western blot analysis and then confirmed by MALDI-TOF. Mass-spectrometry showed that up to four of the five arginine residues present in LL-37 could be ADP-ribosylated on the same peptide when incubated at a high NAD concentration in the presence of ART1. The attachment of negatively charged ADP-ribose moieties considerably alters the positive charge of the arginine residues thus reducing the cationicity of LL-37. The cationic nature of LL-37 is key for its ability to interact with cell membranes or negatively charged biomolecules, such as DNA, RNA, F-actin and glycosaminoglycans. Thus, the ADP-ribosylation of LL-37 is expected to have the potential to modulate LL-37 biological activities in several physiological and pathological settings.


Assuntos
ADP Ribose Transferases/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , NAD/metabolismo , Adenosina Difosfato Ribose/metabolismo , Animais , Arginina/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Proteínas Ligadas por GPI/metabolismo , Humanos , Imunomodulação , Espectrometria de Massas , Catelicidinas
4.
mBio ; 4(3): e00244-13, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23631918

RESUMO

UNLABELLED: Clostridium difficile is the leading cause of antibiotics-associated diarrhea and pseudomembranous colitis. Hypervirulent C. difficile strains produce the binary actin-ADP-ribosylating toxin CDT (C. difficile transferase), in addition to the Rho-glucosylating toxins A and B. We recently identified the lipolysis-stimulated lipoprotein receptor (LSR) as the host receptor that mediates uptake of CDT into target cells. Here we investigated in H1-HeLa cells, which ectopically express LSR, the influence of CDT on the plasma membrane distribution of the receptor. We found by fluorescence microscopy that the binding component of CDT (CDTb) induces clustering of LSR into subcompartments of the plasma membrane. Detergent extraction of cells treated with CDTb, followed by sucrose gradient fractionation, uncovered accumulation of LSR in detergent-resistant membranes (DRMs) that contained typical marker proteins of lipid rafts. Membrane cholesterol depletion with methyl-ß-cyclodextrin inhibited the association of LSR with DRMs upon addition of CDTb. The receptor-binding domain of CDTb also triggered LSR clustering into DRMs. CDTb-triggered clustering of LSR into DRMs could be confirmed in Caco-2 cells. Our data suggest that CDT forces its receptor to cluster into lipid rafts and that oligomerization of the B component might enhance but is not essential for this process. IMPORTANCE: C. difficile binary toxin CDT is a member of the iota-like, actin ADP-ribosylating toxin family. The mechanism that mediates endocytic uptake of these toxins still remains elusive. Previous studies highlighted the importance of lipid rafts for oligomerization of the binding component of these toxins and for cell entry. Recently, the host cell receptor for this toxin family, namely, the lipolysis-stimulated lipoprotein receptor (LSR), has been identified. Our study now demonstrates that the binding component of CDT (CDTb) induces clustering of LSR into lipid rafts. Importantly, LSR clustering is efficiently induced also by the receptor-binding domain of CDTb, suggesting that oligomerization of the B component of CDT is not the main trigger of this process. The current work extends our knowledge on the cooperative play between iota-like toxins and their receptor.


Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Clostridioides difficile/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Receptores de Lipoproteínas/análise , Células CACO-2 , Análise Mutacional de DNA , Células HeLa , Humanos , Microscopia de Fluorescência , Estrutura Terciária de Proteína
5.
PLoS One ; 7(8): e41417, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22879887

RESUMO

Among the several toxins used by pathogenic bacteria to target eukaryotic host cells, proteins that exert ADP-ribosylation activity represent a large and studied family of dangerous and potentially lethal toxins. These proteins alter cell physiology catalyzing the transfer of the ADP-ribose unit from NAD to cellular proteins involved in key metabolic pathways. In the present study, we tested the capability of four of these toxins, to ADP-ribosylate α- and ß- defensins. Cholera toxin (CT) from Vibrio cholerae and heat labile enterotoxin (LT) from Escherichia coli both modified the human α-defensin (HNP-1) and ß- defensin-1 (HBD1), as efficiently as the mammalian mono-ADP-ribosyltransferase-1. Pseudomonas aeruginosa exoenzyme S was inactive on both HNP-1 and HBD1. Neisseria meningitidis NarE poorly recognized HNP-1 as a substrate but it was completely inactive on HBD1. On the other hand, HNP-1 strongly influenced NarE inhibiting its transferase activity while enhancing auto-ADP-ribosylation. We conclude that only some arginine-specific ADP-ribosylating toxins recognize defensins as substrates in vitro. Modifications that alter the biological activities of antimicrobial peptides may be relevant for the innate immune response. In particular, ADP-ribosylation of antimicrobial peptides may represent a novel escape mechanism adopted by pathogens to facilitate colonization of host tissues.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Adenosina Difosfato Ribose/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Arginina/metabolismo , Toxinas Biológicas/metabolismo , ADP Ribose Transferases/metabolismo , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Linhagem Celular , Toxina da Cólera/metabolismo , Humanos , Dados de Sequência Molecular , NAD+ Nucleosidase/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , alfa-Defensinas/química
6.
Int J Pept ; 2011: 594723, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21904558

RESUMO

HNP-1 is an antimicrobial peptide that undergoes proteolytic cleavage to become a mature peptide. This process represents the mechanism commonly used by the cells to obtain a fully active antimicrobial peptide. In addition, it has been recently described that HNP-1 is recognized as substrate by the arginine-specific ADP-ribosyltransferase-1. Arginine-specific mono-ADP-ribosylation is an enzyme-catalyzed post-translational modification in which NAD(+) serves as donor of the ADP-ribose moiety, which is transferred to the guanidino group of arginines in target proteins. While the arginine carries one positive charge, the ADP-ribose is negatively charged at the phosphate moieties at physiological pH. Therefore, the attachment of one or more ADP-ribose units results in a marked change of cationicity. ADP-ribosylation of HNP-1 drastically reduces its cytotoxic and antibacterial activities. While the chemotactic activity of HNP-1 remains unaltered, its ability to induce interleukin-8 production is enhanced. The arginine 14 of HNP-1 modified by the ADP-ribose is in some cases processed into ornithine, perhaps representing a different modality in the regulation of HNP-1 activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA