Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Blood ; 143(16): 1599-1615, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38394668

RESUMO

ABSTRACT: Treatment resistance of leukemia stem cells (LSCs) and suppression of the autologous immune system represent major challenges to achieve a cure in acute myeloid leukemia (AML). Although AML blasts generally retain high levels of surface CD38 (CD38pos), LSCs are frequently enriched in the CD34posCD38neg blast fraction. Here, we report that interferon gamma (IFN-γ) reduces LSCs clonogenic activity and induces CD38 upregulation in both CD38pos and CD38neg LSC-enriched blasts. IFN-γ-induced CD38 upregulation depends on interferon regulatory factor 1 transcriptional activation of the CD38 promoter. To leverage this observation, we created a novel compact, single-chain CD38-CD3 T-cell engager (BN-CD38) designed to promote an effective immunological synapse between CD38pos AML cells and both CD8pos and CD4pos T cells. We demonstrate that BN-CD38 engages autologous CD4pos and CD8pos T cells and CD38pos AML blasts, leading to T-cell activation and expansion and to the elimination of leukemia cells in an autologous setting. Importantly, BN-CD38 engagement induces the release of high levels of IFN-γ, driving the expression of CD38 on CD34posCD38neg LSC-enriched blasts and their subsequent elimination. Critically, although BN-CD38 showed significant in vivo efficacy across multiple disseminated AML cell lines and patient-derived xenograft models, it did not affect normal hematopoietic stem cell clonogenicity and the development of multilineage human immune cells in CD34pos humanized mice. Taken together, this study provides important insights to target and eliminate AML LSCs.


Assuntos
Interferon gama , Leucemia Mieloide Aguda , Linfócitos T , Animais , Humanos , Camundongos , ADP-Ribosil Ciclase 1/imunologia , ADP-Ribosil Ciclase 1/metabolismo , Antígenos CD34/metabolismo , Linhagem Celular Tumoral , Células-Tronco Hematopoéticas/metabolismo , Interferon gama/efeitos dos fármacos , Interferon gama/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ativação Linfocitária/efeitos dos fármacos
2.
Nucleic Acids Res ; 50(6): 3445-3455, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35253884

RESUMO

Concatemers of d(TCCC) that were first detected through their association with deletions at the RACK7 locus, are widespread throughout the human genome. Circular dichroism spectra show that d(GGGA)n sequences form G-quadruplexes when n > 3, while i-motif structures form at d(TCCC)n sequences at neutral pH when n ≥ 7 in vitro. In the PC3 cell line, deletions are observed only when the d(TCCC)n variant is long enough to form significant levels of unresolved i-motif structure at neutral pH. The presence of an unresolved i-motif at a representative d(TCCC)n element at RACK7 was suggested by experiments showing that that the region containing the d(TCCC)9 element was susceptible to bisulfite attack in native DNA and that d(TCCC)9 oligo formed an i-motif structure at neutral pH. This in turn suggested that that the i-motif present at this site in native DNA must be susceptible to bisulfite mediated deamination even though it is a closed structure. Bisulfite deamination of the i-motif structure in the model oligodeoxynucleotide was confirmed using mass spectrometry analysis. We conclude that while G-quadruplex formation may contribute to spontaneous mutation at these sites, deletions actually require the potential for i-motif to form and remain unresolved at neutral pH.


Assuntos
Quadruplex G , Dicroísmo Circular , DNA/química , DNA/genética , Genoma Humano , Humanos , Concentração de Íons de Hidrogênio
3.
Cancer Immunol Immunother ; 72(8): 2841-2849, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37209218

RESUMO

Multiple myeloma (MM) is still an incurable disorder despite improved antibody and cellular therapies against different MM antigens. Single targeted antigens have so far been ineffective against MM with most patients relapsing after initial response. Hence, sequential immunotherapies directed at different targets are expected to perform better than monotherapy alone. Here, we optimized and established in preclinical studies the therapeutic rationale of using targeted alpha therapy (TAT) directed against CD38 antigen (225Ac-DOTA-daratumumab) with CAR T cell therapy directed at CS1 antigen in a systemic MM model. The sequential therapies compared CAR T therapy followed by TAT to TAT followed by CAR T therapy. CAR T cell monotherapy increased median survival from 49 days (d) in untreated controls to 71d with a modest improvement to 89d for 3.7 kBq of TAT given 14d later. When CAR T was followed by 7.4 kBq of TAT 29d later, sequential therapy increased median survival from 47d in untreated controls to 106d, compared to 68d for CAR T monotherapy. When CAR T therapy was followed by untargeted alpha immunotherapy using 7.4 kBq of 225Ac-DOTA-trastuzumab (anti-HER2) antibody 29d later, there was only a slight improvement in response over CAR T monotherapy demonstrating the role of tumor targeting. TAT (7.4 kBq) followed by CAR T therapy was also effective when CAR T therapy was delayed for 21d vs 14d or 28d post TAT, highlighting the importance of timing sequential therapies. Sequential targeted therapies using CS1 CAR T or 225Ac-DOTA-CD38 TAT in either order shows promise over monotherapies alone.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Recidiva Local de Neoplasia , Imunoterapia , Imunoterapia Adotiva , Antígeno de Maturação de Linfócitos B
4.
Proc Natl Acad Sci U S A ; 117(46): 28784-28794, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33127759

RESUMO

Single-cell measurement techniques can now probe gene expression in heterogeneous cell populations from the human body across a range of environmental and physiological conditions. However, new mathematical and computational methods are required to represent and analyze gene-expression changes that occur in complex mixtures of single cells as they respond to signals, drugs, or disease states. Here, we introduce a mathematical modeling platform, PopAlign, that automatically identifies subpopulations of cells within a heterogeneous mixture and tracks gene-expression and cell-abundance changes across subpopulations by constructing and comparing probabilistic models. Probabilistic models provide a low-error, compressed representation of single-cell data that enables efficient large-scale computations. We apply PopAlign to analyze the impact of 40 different immunomodulatory compounds on a heterogeneous population of donor-derived human immune cells as well as patient-specific disease signatures in multiple myeloma. PopAlign scales to comparisons involving tens to hundreds of samples, enabling large-scale studies of natural and engineered cell populations as they respond to drugs, signals, or physiological change.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Expressão Gênica/genética , Humanos , Modelos Estatísticos , Modelos Teóricos , Análise de Sequência de RNA/métodos
5.
J Cell Physiol ; 235(10): 7567-7579, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32159236

RESUMO

Transcription initiation factor 90 (TIF-90), an alternatively spliced variant of TIF-IA, differs by a 90 base pair deletion of exon 6. TIF-90 has been shown to regulate ribosomal RNA (rRNA) synthesis by interacting with polymerase I (Pol I) during the initiation of ribosomal DNA (rDNA) transcription in the nucleolus. Recently, we showed that TIF-90-mediated rRNA synthesis can play an important role in driving tumorigenesis in human colon cancer cells. Here we show that TIF-90 binds GTP at threonine 310, and that GTP binding is required for TIF-90-enhanced rRNA synthesis. Overexpression of activated AKT induces TIF-90 T310, but not a GTP-binding site (TIF-90 T310N) mutant, to translocate into the nucleolus and increase rRNA synthesis. Complementing this result, treatment with mycophenolic acid (MPA), an inhibitor of GTP production, dissociates TIF-90 from Pol I and hence abolishes AKT-increased rRNA synthesis by way of TIF-90 activation. Thus, TIF-90 requires bound GTP to fulfill its function as an enhancer of rRNA synthesis. Both TIF variants are highly expressed in colon cancer cells, and depletion of TIF-IA expression in these cells results in significant sensitivity to MPA-inhibited rRNA synthesis and reduced cell proliferation. Finally, a combination of MPA and AZD8055 (an inhibitor of both AKT and mTOR) synergistically inhibits rRNA synthesis, in vivo tumor growth, and other oncogenic activities of primary human colon cancer cells, suggesting a potential avenue for the development of therapeutic treatments by targeting the regulation of rRNA synthesis by TIF proteins.


Assuntos
Carcinogênese/genética , Neoplasias do Colo/genética , Guanosina Trifosfato/genética , RNA Ribossômico/genética , Ribossomos/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , DNA Ribossômico/genética , Células HCT116 , Humanos , RNA Polimerase I/genética , Transdução de Sinais/genética
6.
Blood ; 131(7): 741-745, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29301755

RESUMO

As a growing number of patients with multiple myeloma (MM) respond to upfront therapies while eventually relapsing in a time frame that is often unpredictable, attention has increasingly focused on developing novel diagnostic criteria to also account for disease dissemination. Positron emission tomography/computed tomography (PET/CT) is often used as a noninvasive monitoring strategy to assess cancer cell dissemination, but because the uptake of the currently used radiotracer 18fluorodeoxyglucose (18F-FDG) is a function of the metabolic activity of both malignant and nonmalignant cells, the results frequently lack sufficient specificity. Radiolabeled antibodies targeting MM tissue may detect disease irrespective of cell metabolism. Hence, we conjugated the clinically significant CD38-directed human antibody daratumumab (Darzalex [Dara]) to the DOTA chelator and labeled it with the positron-emitting radionuclide copper 64 (64Cu; 64Cu-DOTA-Dara). Here, we show that 64Cu-DOTA-Dara can efficiently bind CD38 on the surface of MM cells and was mainly detected in the bones associated with tumor in a MM murine model. We also show that PET/CT based on 64Cu-DOTA-Dara displays a higher resolution and specificity to detect MM cell dissemination than does 18F-FDG PET/CT and was even more sensitive than were bioluminescence signals. We therefore have supporting evidence for using 64Cu-DOTA-Dara as a novel imaging agent for MM.


Assuntos
Anticorpos Monoclonais , Radioisótopos de Cobre , Mieloma Múltiplo/diagnóstico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Animais , Anticorpos Monoclonais/farmacocinética , Linhagem Celular Tumoral , Rastreamento de Células/métodos , Radioisótopos de Cobre/farmacocinética , Meia-Vida , Xenoenxertos , Humanos , Camundongos , Mieloma Múltiplo/metabolismo , Transplante de Neoplasias , Traçadores Radioativos
7.
J Cell Physiol ; 234(8): 14040-14049, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30623427

RESUMO

Induction of reactive oxygen species (ROS), an important process for the cytotoxicity of various acute myeloid leukemia (AML) therapies including hypomethylating agents (HMAs), concurrently activates the NF-E2-related factor 2 (Nrf2) antioxidant response pathway which in turn results in induction of antioxidant enzymes that neutralize ROS. In this study, we demonstrated that Nrf2 inhibition is an additional mechanism responsible for the marked antileukemic activity in AML seen with the combination of HMAs and venetoclax (ABT-199). HMA and venetoclax combined treatment augmented mitochondrial ROS induction and apoptosis compared with treatment HMA alone. Treatment of AML cell lines as well as primary AML cells with venetoclax disrupted HMA decitabine-increased nuclear translocation of Nrf2 and induction of downstream antioxidant enzymes including heme oxygenase-1 and NADP-quinone oxidoreductase-1. Venetoclax treatment also leads to dissociation of B-cell lymphoma 2 from the Nrf2/Keap-1 complex and targets Nrf2 to ubiquitination and proteasomal degradation. Thus, our results here demonstrated an undiscovered mechanism underlying synergistic effect of decitabine and venetoclax in AML cells, elucidating for impressive results in antileukemic activity against AML in preclinical and early clinical studies by combined treatment of these drugs.


Assuntos
Decitabina/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Elementos de Resposta Antioxidante/genética , Apoptose/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , NAD(P)H Desidrogenase (Quinona)/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Sulfonamidas/farmacologia , Ubiquitinação
8.
Proc Natl Acad Sci U S A ; 112(30): 9418-23, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26170308

RESUMO

Nucleolin (NCL) is a nucleocytoplasmic protein involved in many biological processes, such as ribosomal assembly, rRNA processing, and mRNA stabilization. NCL also regulates the biogenesis of specific microRNAs (miRNAs) involved in tumor development and aggressiveness. Interestingly, NCL is expressed on the surface of actively proliferating cancer cells, but not on their normal counterparts. Therefore, NCL is an attractive target for antineoplastic treatments. Taking advantage of phage-display technology, we engineered a fully human single-chain fragment variable, named 4LB5. This immunoagent binds NCL on the cell surface, it is translocated into the cytoplasm of target cells, and it abrogates the biogenesis of NCL-dependent miRNAs. Binding of 4LB5 to NCL on the cell surface of a variety of breast cancer and hepatocellular carcinoma cell lines, but not to normal-like MCF-10a breast cells, dramatically reduces cancer cell viability and proliferation. Finally, in orthotopic breast cancer mouse models, 4LB5 administration results in a significant reduction of the tumor volume without evident side effects. In summary, here we describe, to our knowledge, the first anti-NCL single-chain fragment variable displaying antineoplastic activity against established solid tumors, which could represent the prototype of novel immune-based NCL-targeting drugs with clinical potential as diagnostic and therapeutic tools in a wide variety of human cancers.


Assuntos
Antineoplásicos/química , Neoplasias/imunologia , Neoplasias/terapia , Fosfoproteínas/química , Proteínas de Ligação a RNA/química , Anticorpos de Cadeia Única/química , Animais , Apoptose , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Citoplasma/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos SCID , Transplante de Neoplasias , Neoplasias/metabolismo , Biblioteca de Peptídeos , Engenharia de Proteínas , Proteínas Recombinantes/química , Nucleolina
9.
Ann Diagn Pathol ; 32: 28-34, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29414394

RESUMO

Acute reoviral infection has been extensively studied given the virus's propensity to target malignant cells and activate caspase-3 mediated apoptosis. Reovirus infection of malignant N1E-115 mouse neuroblastoma cells led to significant increased expression of importin-ß and exportin-5 mRNAs (qRTPCR) and proteins (immunohistochemistry) which was partially blocked by small interfering LNA oligomers directed against the reoviral genome. Co-expression analysis showed that the N1E-115 cells that contained reoviral capsid protein had accumulated importin-ß and exportin-5, as well as activated caspase 3. Reoviral oncolysis using a syngeneic mouse model of multiple myeloma similarly induced a significant increase in importin-ß and exportin-5 proteins that were co-expressed with reoviral capsid protein and caspase-3. Apoptotic proteins (BAD, BIM, PUMA, NOXA, BAK, BAX) were increased with infection and co-localized with reoviral capsid protein. Surprisingly the anti-apoptotic MCL1 and bcl2 were also increased and co-localized with the capsid protein suggesting that it was the balance of pro-apoptotic molecules that correlated with activation of caspase-3. In summary, productive reoviral infection is strongly correlated with elevated importin-ß and exportin-5 levels which may serve as biomarkers of the disease in clinical specimens.


Assuntos
Biomarcadores/metabolismo , Carioferinas/metabolismo , Mieloma Múltiplo/metabolismo , Terapia Viral Oncolítica/métodos , Infecções por Reoviridae/metabolismo , beta Carioferinas/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/virologia , Vírus Oncolíticos
10.
Mol Carcinog ; 56(7): 1722-1732, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28150872

RESUMO

Multiple myeloma (MM) is a hematologic malignancy characterized by clonal proliferation of plasma cells and overproduction of monoclonal immunoglobins. Treatment with melphalan is currently standard of care for younger and fit patients when followed by hematopoietic stem cell transplantation (HSCT), and in transplant ineligible patients when used in combination regimens. It has been previously shown that changes in the p53 pathway are associated with melphalan efficacy, but the regulatory role of the p14ARF-MDM2-p53 axis has yet to be fully explored. Recently, a non-coding RNA, ANRIL (antisense non-coding RNA in the INK4-ARF locus) has been shown to negatively regulate the transcription of the entire INK4-ARF locus and simultaneously modulate the p53 and pRb pathways. Moreover, some single nucleotide polymorphisms (SNPs) in ANRIL have previously been associated with susceptibility to several malignancies. Here we investigated select ANRIL SNPs in DNA from patient-derived peripheral blood mononuclear cells obtained from 108 MM patients treated with high-dose melphalan followed by HSCT. Our results show that the rs2151280 (CàT) SNP in ANRIL was associated with worse progression-free survival (TC/CC vs TT: HR = 0.53, 95%CI, [0.26, 1.07], P = 0.07; adjusted HR = 0.39, 95%CI, [0.18, 0.84], P = 0.016), and the TT variant had higher ANRIL expression and lower p15, p14ARF, and p16 expression compared to the TC/CC variants. Our results indicate that ANRIL may be involved in melphalan-mediated apoptosis via down-regulating p14ARF and subsequent p53, and that the rs2151280 polymorphism may be a potential prognostic biomarker for relapse in melphalan-treated MM patients.


Assuntos
Leucócitos Mononucleares/patologia , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/patologia , Polimorfismo de Nucleotídeo Único/genética , RNA Longo não Codificante/genética , Transplante de Células-Tronco/efeitos adversos , Adulto , Idoso , Antineoplásicos Alquilantes/efeitos adversos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Terapia Combinada , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Seguimentos , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Melfalan/efeitos adversos , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/terapia , Estadiamento de Neoplasias , Prognóstico , Estudos Prospectivos , Taxa de Sobrevida , Transplante Autólogo , Proteína Supressora de Tumor p14ARF/metabolismo
11.
Blood ; 132(14): 1470-1471, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287470
12.
Cancer Cell ; 12(3): 215-29, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17785203

RESUMO

Noncoding RNA (ncRNA) transcripts are thought to be involved in human tumorigenesis. We report that a large fraction of genomic ultraconserved regions (UCRs) encode a particular set of ncRNAs whose expression is altered in human cancers. Genome-wide profiling revealed that UCRs have distinct signatures in human leukemias and carcinomas. UCRs are frequently located at fragile sites and genomic regions involved in cancers. We identified certain UCRs whose expression may be regulated by microRNAs abnormally expressed in human chronic lymphocytic leukemia, and we proved that the inhibition of an overexpressed UCR induces apoptosis in colon cancer cells. Our findings argue that ncRNAs and interaction between noncoding genes are involved in tumorigenesis to a greater extent than previously thought.


Assuntos
Carcinoma/genética , Leucemia/genética , RNA não Traduzido/química , Sequência de Bases , Análise por Conglomerados , Sequência Conservada , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/fisiologia , Dados de Sequência Molecular , Oncogenes/fisiologia , Análise de Sequência de RNA
13.
Proc Natl Acad Sci U S A ; 109(14): 5316-21, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22431589

RESUMO

MicroRNAs (miRNAs) are increasingly implicated in regulating cancer initiation and progression. In this study, two miRNAs, miR-25 and -32, are identified as p53-repressed miRNAs by p53-dependent negative regulation of their transcriptional regulators, E2F1 and MYC. However, miR-25 and -32 result in p53 accumulation by directly targeting Mdm2 and TSC1, which are negative regulators of p53 and the mTOR (mammalian target of rapamycin) pathway, respectively, leading to inhibition of cellular proliferation through cell cycle arrest. Thus, there is a recurrent autoregulatory circuit involving expression of p53, E2F1, and MYC to regulate the expression of miR-25 and -32, which are miRNAs that, in turn, control p53 accumulation. Significantly, overexpression of transfected miR-25 and -32 in glioblastoma multiforme cells inhibited growth of the glioblastoma multiforme cells in mouse brain in vivo. The results define miR-25 and -32 as positive regulators of p53, underscoring their role in tumorigenesis in glioblastoma.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Encefálicas/patologia , Ciclo Celular , Proliferação de Células , Fator de Transcrição E2F1/fisiologia , Glioblastoma/patologia , Humanos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-myc/fisiologia , Transcrição Gênica , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
14.
Cancer Genomics Proteomics ; 21(3): 238-251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670588

RESUMO

BACKGROUND/AIM: Dynamic DNA sequences (i.e. sequences capable of forming hairpins, G-quadruplexes, i-motifs, and triple helices) can cause replication stress and associated mutations. One example of such a sequence occurs in the RACK7 gene in human DNA. Since this sequence forms i-motif structures at neutral pH that cause replication stress and result in spontaneous deletions in prostate cancer cells, our initial aim was to determine its potential utility as a biomarker of prostate cancer. MATERIALS AND METHODS: We cloned and sequenced the region in RACK7 where i-motif deletions often occur in DNA obtained from eight individuals. Expressed prostatic secretions were obtained from three individuals with a positive biopsy for prostate cancer and two with individuals with a negative biopsy for prostate cancer. Peripheral blood specimens were obtained from two control healthy bone marrow donors and a marrow specimen was obtained from a third healthy marrow donor. Follow-up computer searches of the genomes of 74 mammalian species available at the NCBI ftp site or frequencies of 6 dynamic sequences known to produce mutations or replication stress using a program written in Mathematica were subsequently performed. RESULTS: Deletions were found in RACK7 in specimens from both older normal adults, as well as specimens from older patients with cancer, but not in the youngest normal adult. The deletions appeared to show a weak trend to increasing frequency with patient age. This suggested that endogenous mutations associated with dynamic sequences might accumulate during aging and might serve as biomarkers of biological age rather than direct biomarkers of cancer. To test that hypothesis, we asked whether or not the genomic frequencies of several dynamic sequences known to produce replication stress or mutations in human DNA were inversely correlated with maximum lifespan in mammals. CONCLUSION: Our results confirm this correlation for six dynamic sequences in 74 mammalian genomes studied, thereby suggesting that spontaneously induced replication stress and mutations linked to dynamic sequence frequency may limit lifespan by limiting genome stability.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Animais , Idoso , Pessoa de Meia-Idade , Longevidade/genética , Adulto , Mamíferos/genética , Mutação , Receptores de Superfície Celular/genética
15.
Cancer Res Commun ; 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39466073

RESUMO

Targeted radionuclide therapy is based on injections of cancer-specific molecules conjugated with radioactive nuclides. Despite the specificity of this treatment, it is not devoid of side-effects limiting its use and is especially harmful for rapidly proliferating organs well perfused by blood, like bone marrow. Optimization of radioconjugates administration accounting for toxicity constraints can increase treatment efficacy. Based on our experiments on disseminated multiple myeloma mouse model treated by 225Ac-DOTA-daratumumab, we developed a mathematical model which investigation highlighted the following principles for optimization of targeted radionuclide therapy. 1) Nuclide to antibody ratio importance. The density of radioconjugates on cancer cells determines the density of radiation energy deposited in them. Low labeling ratio as well as accumulation of unlabeled antibodies and antibodies attached to decay products in the bloodstream can mitigate cancer radiation damage due to excessive occupation of specific receptors by antibodies devoid of radioactive nuclides. 2) Cancer binding capacity-based dosing. The total number of specific receptors on cancer cells is a critical factor for treatment optimization, which estimation may allow increasing treatment efficacy close to its theoretical limit. Injection of doses significantly exceeding cancer binding capacity should be avoided since radioconjugates remaining in the bloodstream have negligible efficacy to toxicity ratio. 3) Particle range-guided multi-dosing. The use of short-range particle emitters and high-affinity antibodies can allow for robust treatment optimization via initial saturation of cancer binding capacity, enabling redistribution of further injected radioconjugates and deposited dose towards still viable cells that continue expressing specific receptors.

16.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826403

RESUMO

Targeted radionuclide therapy is based on injections of cancer-specific molecules conjugated with radioactive nuclides. Despite the specificity of this treatment, it is not devoid of side-effects limiting its use and is especially harmful for rapidly proliferating organs well perfused by blood, like bone marrow. Optimization of radioconjugates administration accounting for toxicity constraints can increase treatment efficacy. Based on our experiments on disseminated multiple myeloma mouse model treated by 225Ac-DOTA-daratumumab, we developed a mathematical model which investigation highlighted the following principles for optimization of targeted radionuclide therapy. 1) Nuclide to antibody ratio importance. The density of radioconjugates on cancer cells determines the density of radiation energy deposited in them. Low labeling ratio as well as accumulation of unlabeled antibodies and antibodies attached to decay products in the bloodstream can mitigate cancer radiation damage due to excessive occupation of specific receptors by antibodies devoid of radioactive nuclides. 2) Cancer binding capacity-based dosing. The rate of binding of drug to cancer cells depends on the total number of their specific receptors, which therefore can be estimated from the pharmacokinetic curve of diagnostic radioconjugates. Injection of doses significantly exceeding cancer binding capacity should be avoided since radioconjugates remaining in the bloodstream have negligible efficacy to toxicity ratio. 3) Particle range-guided multi-dosing. The use of short-range particle emitters and high-affinity antibodies allows for robust treatment optimization via initial saturation of cancer binding capacity, enabling redistribution of further injected radioconjugates and deposited dose towards still viable cells that continue expressing specific receptors.

17.
Front Immunol ; 15: 1358478, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698840

RESUMO

Introduction: Cancer combination treatments involving immunotherapies with targeted radiation therapy are at the forefront of treating cancers. However, dosing and scheduling of these therapies pose a challenge. Mathematical models provide a unique way of optimizing these therapies. Methods: Using a preclinical model of multiple myeloma as an example, we demonstrate the capability of a mathematical model to combine these therapies to achieve maximum response, defined as delay in tumor growth. Data from mice studies with targeted radionuclide therapy (TRT) and chimeric antigen receptor (CAR)-T cell monotherapies and combinations with different intervals between them was used to calibrate mathematical model parameters. The dependence of progression-free survival (PFS), overall survival (OS), and the time to minimum tumor burden on dosing and scheduling was evaluated. Different dosing and scheduling schemes were evaluated to maximize the PFS and optimize timings of TRT and CAR-T cell therapies. Results: Therapy intervals that were too close or too far apart are shown to be detrimental to the therapeutic efficacy, as TRT too close to CAR-T cell therapy results in radiation related CAR-T cell killing while the therapies being too far apart result in tumor regrowth, negatively impacting tumor control and survival. We show that splitting a dose of TRT or CAR-T cells when administered in combination is advantageous only if the first therapy delivered can produce a significant benefit as a monotherapy. Discussion: Mathematical models are crucial tools for optimizing the delivery of cancer combination therapy regimens with application along the lines of achieving cure, maximizing survival or minimizing toxicity.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Animais , Imunoterapia Adotiva/métodos , Camundongos , Terapia Combinada/métodos , Receptores de Antígenos Quiméricos/imunologia , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/radioterapia , Modelos Teóricos , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/radioterapia , Radioisótopos/uso terapêutico , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Hematol Oncol ; 17(1): 67, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143574

RESUMO

BACKGROUND: The interleukin-1 receptor accessory protein (IL1RAP) is highly expressed on acute myeloid leukemia (AML) bulk blasts and leukemic stem cells (LSCs), but not on normal hematopoietic stem cells (HSCs), providing an opportunity to target and eliminate the disease, while sparing normal hematopoiesis. Herein, we report the activity of BIF002, a novel anti-IL1RAP/CD3 T cell engager (TCE) in AML. METHODS: Antibodies to IL1RAP were isolated from CD138+ B cells collected from the immunized mice by optoelectric positioning and single cell sequencing. Individual mouse monoclonal antibodies (mAbs) were produced and characterized, from which we generated BIF002, an anti-human IL1RAP/CD3 TCE using Fab arm exchange. Mutations in human IgG1 Fc were introduced to reduce FcγR binding. The antileukemic activity of BIF002 was characterized in vitro and in vivo using multiple cell lines and patient derived AML samples. RESULTS: IL1RAP was found to be highly expressed on most human AML cell lines and primary blasts, including CD34+ LSC-enriched subpopulation from patients with both de novo and relapsed/refractory (R/R) leukemia, but not on normal HSCs. In co-culture of T cells from healthy donors and IL1RAPhigh AML cell lines and primary blasts, BIF002 induced dose- and effector-to-target (E:T) ratio-dependent T cell activation and leukemic cell lysis at subnanomolar concentrations. BIF002 administered intravenously along with human T cells led to depletion of leukemic cells, and significantly prolonged survival of IL1RAPhigh MOLM13 or AML patient-derived xenografts with no off-target side effects, compared to controls. Of note, BiF002 effectively redirects T cells to eliminate LSCs, as evidenced by the absence of disease initiation in secondary recipients of bone marrow (BM) from BIF002+T cells-treated donors (median survival not reached; all survived > 200 days) compared with recipients of BM from vehicle- (median survival: 26 days; p = 0.0004) or isotype control antibody+T cells-treated donors (26 days; p = 0.0002). CONCLUSIONS: The novel anti-IL1RAP/CD3 TCE, BIF002, eradicates LSCs and significantly prolongs survival of AML xenografts, representing a promising, novel treatment for AML.


Assuntos
Proteína Acessória do Receptor de Interleucina-1 , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Linfócitos T , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Humanos , Animais , Camundongos , Proteína Acessória do Receptor de Interleucina-1/imunologia , Linfócitos T/imunologia , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Camundongos Endogâmicos NOD
19.
Proteomics ; 13(20): 3013-29, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23983189

RESUMO

Multiple myeloma (MM) is a hematological malignancy caused by a microenviromentally aided persistence of plasma cells in the bone marrow. The role that extracellular vesicles (EVs), microvesicles and exosomes, released by MM cells have in cell-to-cell communication and signaling in the bone marrow is currently unknown. This paper describes the proteomic content of EVs derived from MM.1S and U266 MM cell lines. First, we compared the protein identifications between the vesicles and cellular lysates of each cell line finding a large overlap in protein identifications. Next, we applied label-free spectral count quantitation to determine proteins with differential abundance between the groups. Finally, we used bioinformatics to categorize proteins with significantly different abundances into functional groups. The results illustrate the first use of label-free spectral counting applied to determine relative protein abundances in EVs.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Mieloma Múltiplo/metabolismo , Coloração e Rotulagem/métodos , Extratos Celulares , Linhagem Celular Tumoral , Cromatografia Líquida , Vesículas Citoplasmáticas/ultraestrutura , Humanos , Espectrometria de Massas , Mieloma Múltiplo/ultraestrutura , Proteínas de Neoplasias/metabolismo , Proteômica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA