Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 287(1935): 20201688, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32962546

RESUMO

Tarantulas paradoxically exhibit a diverse palette of vivid coloration despite their crepuscular to nocturnal habits. The evolutionary origin and maintenance of these colours remains mysterious. In this study, we reconstructed the ancestral states of both blue and green coloration in tarantula setae, and tested how these colours correlate with presence of stridulation, urtication and arboreality. Green coloration has probably evolved at least eight times, and blue coloration is probably an ancestral condition that appears to be lost more frequently than gained. While our results indicate that neither colour correlates with the presence of stridulation or urtication, the evolution of green coloration appears to depend upon the presence of arboreality, suggesting that it ptobably originated for and functions in crypsis through substrate matching among leaves. We also constructed a network of opsin homologues across tarantula transcriptomes. Despite their crepuscular tendencies, tarantulas express a considerable diversity of opsin genes-a finding that contradicts current consensus that tarantulas have poor colour vision on the basis of low opsin diversity. Overall, our findings raise the possibility that blue coloration could have ultimately evolved via sexual selection and perhaps proximately be used in mate choice or predation avoidance due to possible sex differences in mate-searching.


Assuntos
Opsinas , Pigmentação , Aranhas/fisiologia , Animais , Cor , Evolução Molecular , Comportamento Predatório , Opsinas de Bastonetes , Caracteres Sexuais
2.
Mol Phylogenet Evol ; 140: 106573, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31374259

RESUMO

Mygalomorph spiders of the family Theraphosidae, known to the broader public as tarantulas, are among the most recognizable arachnids on earth due to their large size and widespread distribution. Their use of urticating setae is a notable adaptation that has evolved exclusively in certain New World theraphosids. Thus far, the evolutionary history of Theraphosidae remains poorly understood; theraphosid systematics still largely relies on morphological datasets, which suffer from high degrees of homoplasy, and traditional Sanger sequencing of preselected genes failed to provide strong support for supra-generic clades. In this study, we provide the first robust phylogenetic hypothesis of theraphosid evolution inferred from transcriptome data. A core ortholog approach was used to generate a phylogeny from 2460 orthologous genes across 25 theraphosid genera, representing all of the major theraphosid subfamilies, except Selenogyrinae. Our phylogeny recovers an unprecedented monophyletic group that comprises the vast majority of New World theraphosid subfamilies including Aviculariinae, Schismatothelinae and Theraphosinae. Concurrently, we provide additional evidence for the integrity of questionable subfamilies, such as Poecilotheriinae and Psalmopoeinae, and support the non-monophyly of Ischnocolinae. The deeper relationships between almost all subfamilies are confidently inferred. We also used our phylogeny in tandem with published morphological data to perform ancestral state analyses on urticating setae, and contextualize our reconstructions with emphasis on the complex evolutionary history of the trait.


Assuntos
Filogenia , Sensilas/anatomia & histologia , Aranhas/anatomia & histologia , Aranhas/genética , Transcriptoma/genética , Animais , Funções Verossimilhança , Sensilas/ultraestrutura , Aranhas/classificação
3.
Mol Phylogenet Evol ; 125: 213-219, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29635024

RESUMO

Psechrids are an enigmatic family of S.E. Asian spiders. This small family builds sheet webs and even orb webs, yet unlike other orb weavers, its putative relatives are largely cursorial lycosoids - a superfamily of approximately seven spider families related to wolf spiders. The orb web was invented at least twice: first in a very ancient event, and then second, within this clade of wolf-like spiders that reinvented this ability. Exactly how the spiders modified their silks, anatomy, and behaviors to accomplish this transition requires that we identify their precise evolutionary origins - yet, thus far, molecular phylogenies show poor support and considerable disagreement. Using phylogenomic methods based on whole body transcriptomes for psechrids and their putative relatives, we have recovered a well-supported phylogeny that places the Psechridae sister to the Ctenidae - a family of mostly cursorial habits but that, as with all psechrids, retains some cribellate species. Although this position reinforces the prevailing view that orb weaving in psechrids is largely a consequence of convergence, it is still possible that some components of this behavior are retained or resurrected in common with more distant true orb weaving ancestors.


Assuntos
Evolução Biológica , Seda/biossíntese , Aranhas/classificação , Animais , Evolução Molecular , Feminino , Genoma , Funções Verossimilhança , Filogenia , Transcriptoma/genética
4.
Am J Bot ; 105(3): 614-622, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29603138

RESUMO

Providing science and society with an integrated, up-to-date, high quality, open, reproducible and sustainable plant tree of life would be a huge service that is now coming within reach. However, synthesizing the growing body of DNA sequence data in the public domain and disseminating the trees to a diverse audience are often not straightforward due to numerous informatics barriers. While big synthetic plant phylogenies are being built, they remain static and become quickly outdated as new data are published and tree-building methods improve. Moreover, the body of existing phylogenetic evidence is hard to navigate and access for non-experts. We propose that our community of botanists, tree builders, and informaticians should converge on a modular framework for data integration and phylogenetic analysis, allowing easy collaboration, updating, data sourcing and flexible analyses. With support from major institutions, this pipeline should be re-run at regular intervals, storing trees and their metadata long-term. Providing the trees to a diverse global audience through user-friendly front ends and application development interfaces should also be a priority. Interactive interfaces could be used to solicit user feedback and thus improve data quality and to coordinate the generation of new data. We conclude by outlining a number of steps that we suggest the scientific community should take to achieve global phylogenetic synthesis.


Assuntos
Disseminação de Informação , Gestão da Informação , Filogenia , Plantas/genética , DNA de Plantas , Humanos , Tecnologia da Informação , Análise de Sequência de DNA
5.
Proc Natl Acad Sci U S A ; 111(38): 13745-50, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25225365

RESUMO

The processes causing the latitudinal gradient in species richness remain elusive. Ecological theories for the origin of biodiversity gradients, such as competitive exclusion, neutral dynamics, and environmental filtering, make predictions for how functional diversity should vary at the alpha (within local assemblages), beta (among assemblages), and gamma (regional pool) scales. We test these predictions by quantifying hypervolumes constructed from functional traits representing major axes of plant strategy variation (specific leaf area, plant height, and seed mass) in tree assemblages spanning the temperate and tropical New World. Alpha-scale trait volume decreases with absolute latitude and is often lower than sampling expectation, consistent with environmental filtering theory. Beta-scale overlap decays with geographic distance fastest in the temperate zone, again consistent with environmental filtering theory. In contrast, gamma-scale trait space shows a hump-shaped relationship with absolute latitude, consistent with no theory. Furthermore, the overall temperate trait hypervolume was larger than the overall tropical hypervolume, indicating that the temperate zone permits a wider range of trait combinations or that niche packing is stronger in the tropical zone. Although there are limitations in the data, our analyses suggest that multiple processes have shaped trait diversity in trees, reflecting no consistent support for any one theory.


Assuntos
Biodiversidade , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Característica Quantitativa Herdável , Árvores/fisiologia
6.
PLoS Genet ; 8(8): e1002893, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916033

RESUMO

Understanding how novel complex traits originate involves investigating the time of origin of the trait, as well as the origin of its underlying gene regulatory network in a broad comparative phylogenetic framework. The eyespot of nymphalid butterflies has served as an example of a novel complex trait, as multiple genes are expressed during eyespot development. Yet the origins of eyespots remain unknown. Using a dataset of more than 400 images of butterflies with a known phylogeny and gene expression data for five eyespot-associated genes from over twenty species, we tested origin hypotheses for both eyespots and eyespot-associated genes. We show that eyespots evolved once within the family Nymphalidae, approximately 90 million years ago, concurrent with expression of at least three genes associated with early eyespot development. We also show multiple losses of expression of most genes from this early three-gene cluster, without corresponding losses of eyespots. We propose that complex traits, such as eyespots, may have originated via co-option of a large pre-existing complex gene regulatory network that was subsequently streamlined of genes not required to fulfill its novel developmental function.


Assuntos
Borboletas/genética , Expressão Gênica , Pigmentação/genética , Asas de Animais/metabolismo , Animais , Evolução Biológica , Feminino , Redes Reguladoras de Genes , Estudos de Associação Genética , Genótipo , Masculino , Família Multigênica , Fenótipo , Filogenia , Asas de Animais/anatomia & histologia
7.
Proc Biol Sci ; 281(1787)2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24870037

RESUMO

Serial homologues are repeated traits that share similar development but occur in different parts of the body. Variation in number of repeats accounts for substantial diversity in animal form and considerable work has focused on identifying the factors accounting for this variation. Little is known, however, about how serial homologues originally become repeated, or about the relative timing of repeat individuation relative to repeat origin. Here, we show that the serially repeated eyespots on nymphalid butterfly wings most likely arose as a small cluster of units on the ventral hindwing that were later co-opted to the dorsal and anterior wing surfaces. Based on comparative analyses of over 400 species, we found support for a model of eyespot origin followed by redeployment, rather than by the conventional model, where eyespots arose as a complete row of undifferentiated units that later gained individuation. In addition, eyespots most likely evolved from simpler pattern elements, single-coloured spots, which were already individuated among different wing sectors. Finally, the late appearance of eyespots on the dorsal, hidden wing surface further suggests that these novel complex traits originally evolved for one function (thwarting predator attacks) and acquired a second function (sexual signalling) when moved to a different body location. This broad comparative analysis illustrates how serial homologues may initially evolve as a few units serving a particular function and subsequently become repeated in novel body locations with new functions.


Assuntos
Evolução Biológica , Borboletas/genética , Expressão Gênica , Pigmentação , Asas de Animais/fisiologia , Animais , Modelos Biológicos , Fenótipo
8.
BMC Bioinformatics ; 14: 16, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23324024

RESUMO

BACKGROUND: The digitization of biodiversity data is leading to the widespread application of taxon names that are superfluous, ambiguous or incorrect, resulting in mismatched records and inflated species numbers. The ultimate consequences of misspelled names and bad taxonomy are erroneous scientific conclusions and faulty policy decisions. The lack of tools for correcting this 'names problem' has become a fundamental obstacle to integrating disparate data sources and advancing the progress of biodiversity science. RESULTS: The TNRS, or Taxonomic Name Resolution Service, is an online application for automated and user-supervised standardization of plant scientific names. The TNRS builds upon and extends existing open-source applications for name parsing and fuzzy matching. Names are standardized against multiple reference taxonomies, including the Missouri Botanical Garden's Tropicos database. Capable of processing thousands of names in a single operation, the TNRS parses and corrects misspelled names and authorities, standardizes variant spellings, and converts nomenclatural synonyms to accepted names. Family names can be included to increase match accuracy and resolve many types of homonyms. Partial matching of higher taxa combined with extraction of annotations, accession numbers and morphospecies allows the TNRS to standardize taxonomy across a broad range of active and legacy datasets. CONCLUSIONS: We show how the TNRS can resolve many forms of taxonomic semantic heterogeneity, correct spelling errors and eliminate spurious names. As a result, the TNRS can aid the integration of disparate biological datasets. Although the TNRS was developed to aid in standardizing plant names, its underlying algorithms and design can be extended to all organisms and nomenclatural codes. The TNRS is accessible via a web interface at http://tnrs.iplantcollaborative.org/ and as a RESTful web service and application programming interface. Source code is available at https://github.com/iPlantCollaborativeOpenSource/TNRS/.


Assuntos
Plantas/classificação , Software , Algoritmos , Classificação/métodos , Bases de Dados Factuais , Internet , Nomes , Interface Usuário-Computador
9.
PeerJ ; 9: e11162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868819

RESUMO

The study of biogeography seeks taxa that share a key set of characteristics, such as timescale of diversification, dispersal ability, and ecological lability. Tarantulas are ideal organisms for studying evolution over continental-scale biogeography given their time period of diversification, their mostly long-lived sedentary lives, low dispersal rate, and their nevertheless wide circumtropical distribution. In tandem with a time-calibrated transcriptome-based phylogeny generated by PhyloBayes, we estimate the ancestral ranges of ancient tarantulas using two methods, DEC+j and BBM, in the context of their evolution. We recover two ecologically distinct tarantula lineages that evolved on the Indian Plate before it collided with Asia, emphasizing the evolutionary significance of the region, and show that both lineages diversified across Asia at different times. The most ancestral tarantulas emerge on the Americas and Africa 120 Ma-105.5 Ma. We provide support for a dual colonization of Asia by two different tarantula lineages that occur at least 20 million years apart, as well as a Gondwanan origin for the group. We determine that their current distributions are attributable to a combination of Gondwanan vicariance, continental rafting, and geographic radiation. We also discuss emergent patterns in tarantula habitat preferences through time.

10.
Bioinformatics ; 24(14): 1641-2, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18487241

RESUMO

UNLABELLED: PhyloWidget is a web-based tool for the visualization and manipulation of phylogenetic tree data. It can be accessed online or downloaded as a standalone application. A simple URL-based API allows databases to easily link to and customize PhyloWidget for interactively viewing medium- to large-sized trees. AVAILABILITY: PhyloWidget is available for online use or download at http://www.phylowidget.org/.


Assuntos
Biologia Computacional/métodos , Filogenia , Algoritmos , Animais , Evolução Biológica , Gráficos por Computador , Computadores , Apresentação de Dados , Bases de Dados Genéticas , Evolução Molecular , Humanos , Internet , Linguagens de Programação , Software , Design de Software
11.
Insect Sci ; 23(3): 335-52, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26898323

RESUMO

The Distal-less (Dll) genes are homeodomain transcription factors that are present in most Metazoa and in representatives of all investigated arthropod groups. In Drosophila, the best studied insect, Dll plays an essential role in forming the proximodistal axis of the legs, antennae and analia, and in specifying antennal identity. The initiation of Dll expression in clusters of cells in mid-lateral regions of the Drosophila embryo represents the earliest genetic marker of limbs. Dll genes are involved in the development of the peripheral nervous system and sensitive organs, and they also function as master regulators of black pigmentation in some insect lineages. Here we analyze the complete genomes of six insects, the nematode Caenorhabditis elegans and Homo sapiens, as well as multiple Dll sequences available in databases in order to examine the structure and protein features of these genes. We also review the function, expression, regulation and evolution of arthropod Dll genes with emphasis on insects and spiders.


Assuntos
Genes Homeobox , Insetos/genética , Aranhas/genética , Animais , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Genoma de Inseto , Humanos , Nematoides/genética
12.
R Soc Open Sci ; 3(1): 150614, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26909190

RESUMO

Butterfly eyespots are known to function in predator deflection and predator intimidation, but it is still unclear what factors cause eyespots to serve one function over the other. Both functions have been demonstrated in different species that varied in eyespot size, eyespot number and wing size, leaving the contribution of each of these factors to butterfly survival unclear. Here, we study how each of these factors contributes to eyespot function by using paper butterfly models, where each factor is varied in turn, and exposing these models to predation in the field. We find that the presence of multiple, small eyespots results in high predation, whereas single large eyespots (larger than 6 mm in diameter) results in low predation. These data indicate that single large eyespots intimidate predators, whereas multiple small eyespots produce a conspicuous, but non-intimidating signal to predators. We propose that eyespots may gain an intimidation function by increasing in size. Our measurements of eyespot size in 255 nymphalid butterfly species show that large eyespots are relatively rare and occur predominantly on ventral wing surfaces. By mapping eyespot size on the phylogeny of the family Nymphalidae, we show that these large eyespots, with a potential intimidation function, are dispersed throughout multiple nymphalid lineages, indicating that phylogeny is not a strong predictor of eyespot size.

13.
Pharmacogenomics ; 5(5): 525-52, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15212590

RESUMO

High-throughput data collection using gene microarrays has great potential as a method for addressing the pharmacogenomics of complex biological systems. Similarly, mechanism-based pharmacokinetic/pharmacodynamic modeling provides a tool for formulating quantitative testable hypotheses concerning the responses of complex biological systems. As the response of such systems to drugs generally entails cascades of molecular events in time, a time series design provides the best approach to capturing the full scope of drug effects. A major problem in using microarrays for high-throughput data collection is sorting through the massive amount of data in order to identify probe sets and genes of interest. Due to its inherent redundancy, a rich time series containing many time points and multiple samples per time point allows for the use of less stringent criteria of expression, expression change and data quality for initial filtering of unwanted probe sets. The remaining probe sets can then become the focus of more intense scrutiny by other methods, including temporal clustering, functional clustering and pharmacokinetic/pharmacodynamic modeling, which provide additional ways of identifying the probes and genes of pharmacological interest.


Assuntos
Metilprednisolona/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Farmacogenética/métodos , Adrenalectomia , Animais , Masculino , RNA Complementar/biossíntese , RNA Complementar/genética , Ratos , Ratos Wistar , Fatores de Tempo
15.
Front Plant Sci ; 2: 34, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22645531

RESUMO

The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

16.
18.
Evol Bioinform Online ; 1: 37-46, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19325851

RESUMO

As the size of phylogenetic databases grows, the need for efficiently searching these databases arises. Thanks to previous and ongoing research, searching by attribute value and by text has become commonplace in these databases. However, searching by topological or physical structure, especially for large databases and especially for approximate matches, is still an art. We propose structural search techniques that, given a query or pattern tree P and a database of phylogenies D, find trees in D that are sufficiently close to P. The "closeness" is a measure of the topological relationships in P that are found to be the same or similar in a tree D in D. We develop a filtering technique that accelerates searches and present algorithms for rooted and unrooted trees where the trees can be weighted or unweighted. Experimental results on comparing the similarity measure with existing tree metrics and on evaluating the efficiency of the search techniques demonstrate that the proposed approach is promising.

19.
Genomics ; 86(6): 627-37, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16269234

RESUMO

HSP90 proteins are important molecular chaperones. Transcriptome and genome analyses revealed that the human HSP90 family includes 17 genes that fall into four classes. A standardized nomenclature for each of these genes is presented here. Classes HSP90AA, HSP90AB, HSP90B, and TRAP contain 7, 6, 3, and 1 genes, respectively. HSP90AA genes mapped onto chromosomes 1, 3, 4, and 11; HSP90AB genes mapped onto 3, 4, 6, 13 and 15; HSP90B genes mapped onto 1, 12, and 15; and the TRAP1 gene mapped onto 16. Six genes, HSP90AA1, HSP90AA2, HSP90N, HSP90AB1, HSP90B1 and TRAP1, were recognized as functional, and the remaining 11 genes were considered putative pseudogenes. Amino acid polymorphic variants were detected for genes HSP90AA1, HSP90AA2, HSP90AB1, HSP90B1, and TRAP1. The structures of these genes and the functional motifs and polymorphic variants of their proteins were documented and the features and functions of their proteins were discussed. Phylogenetic analyses based on both nucleotide and protein data demonstrated that HSP90(AA+AB+B) formed a monophyletic clade, whereas TRAP is a relatively distant paralogue of this clade.


Assuntos
Evolução Molecular , Genoma Humano/genética , Proteínas de Choque Térmico HSP90/genética , Família Multigênica/genética , Filogenia , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Biologia Computacional , Componentes do Gene , Genômica/métodos , Proteínas de Choque Térmico HSP90/classificação , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
20.
Mol Biol Evol ; 21(8): 1534-7, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15140947

RESUMO

Despite the importance of molecular phylogenetics, few of its assumptions have been tested with real data. It is commonly assumed that nonparametric bootstrap values are an underestimate of the actual support, Bayesian posterior probabilities are an overestimate of the actual support, and among-gene phylogenetic conflict is low. We directly tested these assumptions by using a well-supported yeast reference tree. We found that bootstrap values were not significantly different from accuracy. Bayesian support values were, however, significant overestimates of accuracy but still had low false-positive error rates (0% to 2.8%) at the highest values (>99%). Although we found evidence for a branch-length bias contributing to conflict, there was little evidence for widespread, strongly supported among-gene conflict from bootstraps. The results demonstrate that caution is warranted concerning conclusions of conflict based on the assumption of underestimation for support values in real data.


Assuntos
Modelos Genéticos , Modelos Estatísticos , Filogenia , Análise de Sequência de DNA/métodos , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA